CRES — A NEW METHOD TOWARDS MEASURING THE ν -MASS

SEBASTIAN BÖSER 7th JUNE 2016 | GDR NEUTRINO 2016 | GRENOBLE

MEASURING ν -MASS

Several types of experiment give us a handle on the neutrino mass scale

$$M = \sum_{i}^{n_{\nu}} m_{\nu,i}$$

Cosmological Measurements

$$\langle m_{\beta\beta}^2\rangle = |\sum_i^{n_\nu} U_{ei}^2 m_{\nu,i} |^2$$

0vββ Measurements

$$\langle m_\beta \rangle^2 = \sum_i^{n_\nu} \mid U_{ei} \mid^2 m_{\nu,i}^2$$

Beta Decay Measurements

TRITIUM BETA-DECAY ${}^{3}H \rightarrow {}^{3}He^{+} + e^{-} + \overline{\nu}_{e}$

 Sum of masses and kinetic energy must add up to mass of initial nucleus

TRITIUM BETA-SPECTRUM

$$\frac{dN}{dE} \sim F(Z, E) p_e(E + m_e) \sqrt{(E - E_0)^2 - m_\beta^2)}$$

Project8 — 4

TRITIUM BETA-SPECTRUM

Endpoint of spectrum changes with ν -mass

→ direct measurement of mass (independent of "nature" of mass)

TRITIUM BETA-SPECTRUM

- Fraction of e⁻ in ROI
 - 10 eV: 2×10⁻¹⁰
 - 1 eV: 2×10⁻¹³
- Requirements
 - high count rate
 - high resolution

Endpoint of spectrum changes with ν -mass

→ direct measurement of mass (independent of nature of mass)

STATE OF THE ART - KATRIN

Key component: MAC-E filter

• align e⁻ momentum $p_{\perp} \rightarrow \overline{p_{\parallel}}$

KATRIN Karlsruhe Trititum Neutrino Experiment

Sensitivity goal

• $m_{\beta} < 200 \text{meV}$

Limited by

- size of spectrometer
- systematic effects
- → need a new and complementary approach

CYCLOTRON RADIATION

Cyclotron radiation

$$f_c = \frac{1}{2\pi} \frac{eB_\perp}{m_e}$$

relativistic correction

$$f_{\gamma} = \frac{f_c}{\gamma} = \frac{1}{2\pi} \frac{eB_{\perp}}{m_e + E_{\rm kin}}$$

"Never measure anything but frequency" - A. L. Schawlow

RESOLUTION

Energy resolution

- $f \cdot \Delta E/E \sim \Delta f$
- ∆E/E ~ 1eV / 511 keV = 2ppm
 → easy!

Frequency resolution

∆f ~ 1/∆t
∆t = 20µs ~ 1400m @ 18keV
→ hard!

Idea

- fill volume with ³H gas
- add magnetic field
- decay electrons spiral around field lines
- add antennas to detect cyclotron radiation

B. Monreal and J. Formaggio, Phys. Rev D80:051301

FREQUENCY SCALE

magnetic field of 1T \rightarrow cyclotron frequency in K-Band

^{83m}Kr provides electrons close to tritium endpoint

RADIATED POWER

Larmor formula

$$P(\gamma, \theta) = \frac{1}{4\pi\varepsilon_0} \frac{2}{3} \frac{q^4 B^2}{m_e^2} (\gamma^2 - 1) \sin^2 \theta$$

Emitted power

- 1.1 fW for 18 keV e⁻ at 90°
- 1.7 fW for 30.4 keV e⁻ at 90°

WAVEGUIDE CELL

SIGNAL AMPLIFCATION AND NOISE

Primary background

 → thermal noise from waveguide and amplifiers
 Project8 — 16

RECEIVER STAGE

- Double-stage down-mixing
- Digitizer: 8-bit, 500Ms/s, 125MHz bandwidth
 - → untriggered

MAGNETIC BOTTLE

Harmonic e⁻ trap
$$\rightarrow$$
 $f_{\gamma} = \frac{f_c}{\gamma} = \frac{1}{2\pi} \frac{eB}{m_e + E_{\text{kin}}} \left(1 + \frac{\cot^2 \theta}{2}\right)$

Effect of trap on measured frequency easily calculable!

EXPECTED SIGNAL

Spectrogram

- time slices
 - → consecutive power spectrum

Signal

- narrow-band
 - → horizontal line
- energy loss by radiation
 → line is tilted

ACTUAL SPECTROGRAM

First detection of single-electron cyclotron radiation!

SPECTROGRAM INFORMATION

Electron tracks in spectrogram are information-dense

ENERGY SPECTRUM

Initial frequency determines initial energy

FIRST ENERGY SPECTRUM

IMPROVED TRAP

Shallower Harmonic trap

- better field uniformity
- smaller acceptance
 → lower rate &
 better resolution

Bathtub trap

- two coils at end of cell
- better uniformity
- larger trap size
 - → larger rate & better resolution

CRES — CYCLOTRON RADIATION EMISSON SPECTROSCOPY

Hardware improvements

- better field uniformity
- reduced
 noise level
- better
 temperature
 stability

POTENTIAL ν -MASS REACH

Sensitivity limited by gas density!

POTENTIAL ν -MASS REACH

Inverted hierarchy limit in reach with atomic tritium!

PROJECT 8 COLLABORATION

T. Thümmler

Karlsruhe Institute of Technology

S. Böser, C. Claessens* Johannes Gutenberg-Universität, Mainz

K. Kazkaz Lawrence Livermore National Laboratory

J. Formaggio, N. Oblath, E. Zayas* Massachusetts Institute of Technology

M. Guigue, A. M. Jones, J. Tedeschi, B. VanDevender Pacific Northwest National Lab

S. Doelman, J. Weintroub, A. Young Smithsonian Astrophysical Observatory

L. de Viveros, B. LaRoque^{*}, B. Monreal University of California, Santa Barbara

P. Doe, A. Ashtari Esfahani^{*}, M. Fertl, E. Machado^{*}, R.G.H. Robertson, L. Rosenberg, G. Rybka University of Washington, Center for Experimental Nuclear Physics and Astrophysics

* indicates graduate student

K. Heeger, L. Saldana*, P. Slocum Yale University

A PHASED APPROACH

Phase	Timeline	Source	R&D Milestones	Science Goals
I	2010-2016	^{83m} Kr	 single electron detection proof of concept 	• conversion electron fill spectrum of 83 Milliter
II	2015-2017	2	• Kurie plot • systematic studies	 Final-state spectrum test ³H−³He mass difference m_{ν} < 10-100 eV/c²
III	2016-2020	2 	● high-rate sensitivity● B-Field mapping	$\circ m_{\nu} < 2 eV/c^2$
IV	2017	Ĩ	øatomic tritium source	• $m_{\nu} < 40 \text{ meV/}c^2$ • measure m_{ν} or determine normal hierarchy

PHASE-II : TRITIUM

Improved insert installed

- first ^{83m}Kr data available → very promising
- T_2 system ready to be installed

PHASE III - LARGE VOLUME

Example antenna configuration and vertex resolution being modeled

- Larger bore ~1T magnet → exists
- Phased array antenna configurations
 → under study

MOLECULAR TRITIUM LIMITATIONS

Advances in High Energy Physics 2013 (2013) 39

Molecular excitationsin daughter moleculeblur tritium endpoint

→ fundamental limit to measurement of ν-mass

Need atomic tritium for ultimate experiment!

PHASE IV: ATOMIC TRITIUM

Studying loffe-Pritchard trap • couple to nuclear magnetic moment $\Delta E = -\vec{\mu} \cdot \vec{B}$

 similar to BEC and antihydrogen traps (ALPHA)

Challenges

- cool atomic tritium
 - to sub-Kelvin
- need high T/T₂ purity

SUMMARY

Project 8:

 new technology: CRES - Cyclotron Radiation Emission Spectroscopy

Next step

measure full tritium spectrum

Longer-term future

- large scale setup limited by tritium density and molecular excitations
 - → phased antenna array
 - → atomic tritium source

BACKUP

ADIABATIC INVARIANCE

Adiabatic invariance

•
$$\Phi = B \cdot A = B \pi r_{cycl}^2$$

 $\approx p_{\perp}^2 / (q \cdot B) = const$

Slowly changing B

• $p_{\perp} \rightarrow p_{\parallel}$

MAC-E FILTER Magnetic Adiabatic Collimation with Electrostatic Filter

Combination of

- Adiabatically changing B-field
 → convert E_⊥ to E_{||}
- E-field to filter by energy
- Resolution
 - ratio of B_s / B_A
 → limited by size

DISENTANGLING ENERGY AND ANGLE

Electron oscillates in trap

• axial mode (in harmonic trap)

$$\omega_a \propto v \left(\frac{a}{\sin\theta} + \frac{4\sin\theta}{m_e\cos^2\theta}\right)^-$$

- sidebands to cyclotron peak
- distance depends on pitch angle θ

SIDEBAND OBSERVATION

THREE DEGREES OF FREEDOM

