

Méthodes spectroscopiques, techniques d'analyse

Catherine BESSADA

catherine.bessada@cnrs-orleans.fr

Groupe « Structure et Dynamique de sels fondus » CNRS - **CEMHTI** (UPR 3079) Orléans Conditions Extrêmes et Matériaux : Haute Température et Irradiation

http://www.cemhti.cnrs-orleans.fr/

Catherine BESSADA, CEMHTI CNRS Orléans

Approche structurale in situ de sels fondus à haute température

• Résonance Magnétique Nucléaire en quelques mots

Approche expérimentale *in situ* à haute température : difficultés techniques et solutions...le cas des fluorures fondus

 Exemples : Electrolyse de l'aluminium / fluorures d'intérêt nucléaire

Résonance Magnétique Nucléaire en quelques mots...

Généralités

Absorption / émission d'une onde **RF** par les **noyaux** des atomes d'un échantillon placé dans un **champ magnétique intense**

Moment nucléaire : les noyaux sont caractérisés par un spin nucléaire I, et un moment magnétique nucléaire μ tq:

 $\gamma = rapport gyromagnétique$

$$\vec{\mu} = \gamma . \vec{I}$$

I entier ou demi entier A impair *I 1/2 entier* : ¹H, ¹³C, ¹⁵N, ¹⁹F, ²⁹Si, (I=1/2) ²³Na, ¹¹B (I=3/2), ²⁷AI, ¹⁷O (I=5/2) A pair, Z pair *I=0* : ¹²C, ²⁸Si, ¹⁶O A pair, Z impair *I entier*, ²H, ⁶Li, ¹⁴N (I=1)

Catherine BESSADA , CEMHTI CNRS Orléans

Effet Zeeman

spin 1/2 ~ aiguille aimantée microscopique dont l'orientation est quelconque en l'absence de champ magnétique

Dans le champ magnétique **Bo** ↑
 ≠orientations de m
 ↑ soit **parallèle** à Bo (position la plus stable)
 ↓ soit **antiparallèle** à Bo (position la moins stable)

Précession de Larmor

Effet Zeeman

Effet Zeeman (couplage entre moments magnétiques et B₀) $= y_{L} \quad \overleftarrow{} \quad Hz = -\vec{\mu}.\vec{B}_{0} = -\gamma\hbar B_{0}.I_{z}$ Aimantation macroscopique $M_{0} = \frac{NB_{0}}{3K_{0}T}(\gamma\hbar)^{2}I(I+1)$

Approche quantique : 2I+1 niveaux d'énergie $\Delta E = h v = \gamma \hbar B_0$

Catherine BESSADA, CEMHTI CNRS Orléans

Expérience RMN

1-Préparation du système: échantillon dans un champ Magnétique constant Bo

2-Génération d'une perturbation par une irradiation RF -pulsée-tq $\Delta E = h_V$ (champ magnétique alternatif B1)

3-Détection de la réponse du système après la perturbation et enregistrement du spectre

Champ radiofréquence B1 modulé à la fréquence de Larmor / détection dans le plan $\perp \vec{B}_0$

B1 = (2B1 cos $\omega_0 t$) champ tournant autour de B₀ à la vitesse ω_0

Elément	Isotope	Spin I	Abondance naturelle %	Fréquence de résonance (9,4Teslas)/ MHz	Sensibilité relative (% ¹ H)
Proton	1H	1/2	100	400	1
Fluorine	¹⁹ F	1/2	100	376.3 MHz	0.83
Oxygene	¹⁷ O	5/2	0.037	54.22 MHz	4 10 ⁻²
Chlorine	^{35/37} Cl	3/2	75/ 25	39 / 32 MHz	4 10 ⁻³
Lithium	⁷ Li	3/2	92.6	155.45 MHz	0.3
Sodium	²³ Na	3/2	100	105.8 MHz	0.1
Cesium	¹³³ Cs	7/2	100	52.5 MHz	5 10 ⁻²
Yttrium	⁸⁹ Y	1/2	100	19.6 MHz	1 10-4
Lanthanum	¹³⁹ La	7/2	99.9	52.8 MHz	3 10 ⁻²
Zirconium	⁹¹ Zr	5/2	11.2	37.2 MHz	1 10 ⁻³
Uranium	²³⁵ U	7/2	0.72	7.1 MHz	1 10-4

²³⁴U (0.005%) / ²³⁸U (99.3%)/ ²³²Th : I=0 'Ln'paramagnetiques

hon observable par RMN

Catherine BESSADA, CEMHTI CNRS Orléans

Mesure

Résonance Magnétique Nucléaire

 Structure locale et liaison chimique autour d'un noyau donné solides *cristallin ou désordonné* liquides *solutions ou fondus*

• Quantitativité / selectivité

	Interaction	Nature	Information
olides	Dipolaire	Entre spins voisins	Distances / connectivité
5	Déplacement chimique	Écrantage par les ē	Premiers voisins
	Quadrupolaire	Gradient de champ électrique	Géométrie

Différents environnements locaux (coordinence, nature des premiers voisins, symmétrie..)
 déplacements chimiques différents

Catherine BESSADA, CEMHTI CNRS Orléans

Déplacement Chimique

$$\begin{split} &\mathsf{B}_{\mathsf{eff}} = \mathsf{B}_{\mathsf{0}} - \mathsf{B}_{\mathsf{local}} = \mathsf{B}_{\mathsf{0}} (1 - \sigma) \\ &\omega = \gamma \mathsf{B}_{\mathsf{eff}} = \gamma (\mathsf{B}_{\mathsf{0}} - \sigma \mathsf{B}_{\mathsf{0}}) = \omega_{\mathsf{0}} (1 - \sigma) \\ &\omega_{\mathsf{0}} = \gamma \mathsf{B}_{\mathsf{0}} \qquad \sigma: \text{ constante d'écran} \end{split}$$

 σ dépend de l'environnement (atomes; liaisons chimiques....)

Echelle des fréquences v. B_{loc} (100 Hz) << B₀ (100 MHz) + échelle dépendante de B₀

Quelques milliers de Hertz

Echelle des déplacement chimique δ : indépendant du champ, sans unité, défini par rapport au signal d'une substance de référence (en ppm pour parties par millions)

$$\delta = \frac{\nu - \nu^{\text{ref}}}{\nu^{\text{ref}}} . 10^6$$

Catherine BESSADA , CEMHTI CNRS Orléans

Déplacement Chimique

La constante d'écran σ dépend de la densité électronique autour du noyau

Charge du noyau

Symétrie des orbitales atomiques (p et d) Anisotropie des liaisons Electronégativité Coordinance...

Atome A isolé symétrie sphérique ¹H (1s) Liaison chimique avec B Nuage électronique déformé Electronégativité (EN) de B

B

Α

Densité électronique autour de A \checkmark *déblindage* $\sigma \lor B_{loc} \lor \delta 7$

Catherine BESSADA, CEMHTI CNRS Orléans

RMN à haute température

Chauffage?

Aimant supra conducteur (liquides cryogéniques) Géométrie :

> espace « libre » à l'intérieur de la bobine très limité < 10mm

> protection de la bobine : ne résiste pas à des températures > 150°C

Détection : perturbation du signal

Système de chauffage adapté

Echantillon : container compatible avec mesure RMN (pas de métal)

RMN *in situ* à haute température dans les fluorures fondus

Problèmes et solutions ...

 Éviter toute évaporation ou réaction avec l'atmosphère : creusets étanches

- Compatibilité avec l'observation RMN :aimant, géométrie, radiofréquence..
- Système de chauffage adapté
- Manipulations en boîte à gants sous argon sec

Catherine BESSADA , CEMHTI CNRS Orléans

RMN in situ à haute température

Catherine BESSADA, CEMHTI CNRS Orléans

RMN *in situ* à haute température

Catherine BESSADA , CEMHTI CNRS Orléans

Applications

Métallurgie

✦Electrolyse de l'aluminium

Dépôt métaux réfractaires (Niobium, Tantale..)

Nucléaire

- Retraitement des déchets
- Nouveaux réacteurs (RSF)

Bains cryolithiques

T ~ 1000°C Cryolithe fondue (Na_3AIF_6) Al₂O₃ dissoute Additifs LiF, AIF₃, CaF₂ Impuretés Fe, P, Si... Aluminium

 $\frac{1}{2} \operatorname{Al}_2 \operatorname{O}_3(s) + \frac{3}{4} \operatorname{C}(s) \rightarrow \operatorname{Al}(l) + \frac{3}{4} \operatorname{CO}_2(g)$

Structure et propriétés du bain ?

Catherine BESSADA, CEMHTI CNRS Orléans

RMN des bains cryolithiques

Structure locale des bains fondus?

- espèces ioniques en présence, complexes,
- influence de la composition
- Influence de la température
- influence des additifs
- dissolution d'impuretés.....

NaF-AIF₃ $NaF-AIF_3-AI_2O_3$ NaF-AIF₃ + Fe, P, Si...

 $NaF-AIF_3 + AI$

Thèse V.Lacassagne (1998)

Thèse I.Nuta (2004)

Thèse A.Elbakkali (2009)

Collaborations Alcan-RioTinto + coll. Internationales

Bains cryolithiques

RMN ²⁷AI

Chiolite ($Na_5Al_3F_{14}$)

(ppm)

« saut » de déplacement chimique à la fusion : changement de structure locale autour de l'aluminium / changement de coordinence

Catherine BESSADA, CEMHTI CNRS Orléans

RMN²⁷AIHT NaF-AIF₃

Catherine BESSADA, CEMHTI CNRS Orléans

Dépla	ceme	ents	chimiq	ues	de ²	⁷ Al
dans	les	con	nposés	soli	des	de
référ	ence	(Al,	Na, F)			

Tamb

NaF-AIF₃

1010°C

composée	Structure	$\delta^{_{27Al}}(ppm)$		
		(a)	(b)	
Na ₃ AlF ₆	AlF ₆ ³⁻	-1	1.4	
$Na_5Al_3F_{14}$	AlF ₆ ³⁻	-1.5	-1	
	AlF ₆ ³⁻	-2.8	-3	
αAlF_3	AlF ₆ ³⁻	-15	-13.2	
βAlF_3	AlF ₆ ³⁻		-12.5	
K ₂ NaAlF ₆	AlF ₆ ³⁻		0.8	
K ₃ AlF ₆	AlF ₆ ³⁻	-1	-0.1	
KAlF ₄	AlF ₆ ³⁻	-9.3		
Li ₃ AlF ₆	AlF ₆ ³⁻	-5		
$(NH4)_3AlF_6$	AlF ₆ ³⁻		-0.6	
CaAlF ₅	AlF ₆ ³⁻	-6		
	AlF ₆ ³⁻	-4		
Ca_2AlF_7	AlF ₆ ³⁻	-8		

Catherine BESSADA, CEMHTI CNRS Orléans

RMN ²⁷AI HT

δ^{27} Al / [AIF_x^{3-x}]

Catherine BESSADA, CEMHTI CNRS Orléans

NaF-AIF₃

Catherine BESSADA , CEMHTI CNRS Orléans

NaF-AIF₃ RMN ²⁷AI , ²³Na, ¹⁹F HT $F^{-} AIF_5^{2-} AIF_4^{-} AIF_6^{3-}$ **CryolitheChiolite** IV 40 $\delta_{F} = X(F^{-}) \delta_{F}^{F^{-}} + X(AIF_{6}^{3^{-}}) \delta_{F}^{VI}$ δ ²³Na et ²⁷Al (ppm) **0 0** + X(AIF₅²⁻) δ_F^V + X(AIF₄-) δ_F^{IV} V 27 ≈ 1010°C т $X(AIF_{x}^{3-x})$: B.Gilbert et al. Inorg. Chem. (1996) δ^{19} F (NaF fondu) = -228 ppm δ^{19} F (NaAlF₄ fondu) = -200 ppm ²³Na -20 -180 δ^{19} F calculé -190 -190 δ¹⁹F (ppm) 19**F** ∞ -210(ppm) -200 NaAlF₄ -210 δ^{19} F experimental

Ecole d'été sels fondus haute température SELF 2008, Aussois.

40

50

60

Catherine BESSADA, CEMHTI CNRS Orléans

Fractions anioniques

RMN ²⁷AI HT

B.Gilbert 1997 V.Lacassagne 1998, I.Nuta 2004

Catherine BESSADA, CEMHTI CNRS Orléans

Quantification des espèces oxyfluorées

RMN ¹⁷O HT

 $\delta(^{17}\text{O}) = X^{\text{O}}(\text{Al}_{2}\text{OF}_{6}^{2\text{-}}) \cdot \delta^{17\text{O}}(\text{Al}_{2}\text{OF}_{6}^{2\text{-}}) + X^{\text{O}}(\text{Al}_{2}\text{O}_{2}\text{F}_{4}^{2\text{-}}) \cdot \delta^{17\text{O}}(\text{Al}_{2}\text{O}_{2}\text{F}_{4}^{2\text{-}})$

Catherine BESSADA, CEMHTI CNRS Orléans

Etude des différents noyaux observables ¹⁹F, ²³Na, ²⁷Al, ⁷Li, ¹⁷O

- Approche in situ à Haute température
- Espèces en présence et leur distribution

Besoin de coupler ces résultats à des données de simulation (DM) afin de recalculer les déplacements chimiques dans le liquide à partir des espèces calculées.

Ajout d'additifs, d'oxydes...

Réacteurs à sels fondus

Gestion des déchets

Incinération des actinides mineurs

Production d'énergie durable

Cycle thorium en spectre thermique

Réacteurs à sels fondus

Combustible liquide / Retraitement en ligne

Choix du sel / propriétés physico-chimiques

- viscosité
- diagramme de phase
- potentiel redox
- espèces en présence…

LiF, NaF,(BeF₂), ZrF₄, UF₄, ThF₄

Approche expérimentale *in situ* dans le sel fondu à haute température

Spectroscopies RMN et EXAFS

Elément	lsotope	Spin I	Abondance naturelle %	Fréquence de résonance (9,4Teslas)/ MHz	Sensibilité relative (% ¹ H)
Proton	1H	1/2	100	400	99.98
Fluorine	¹⁹ F	1/2	100	376.3 MHz	0.83
Oxygene	¹⁷ O	5/2	0.037	54.22 MHz	4 10 ⁻²
Chlorine	^{35/37} Cl	3/2	75/ 25	39 / 32 MHz	4 10 ⁻³
Lithium	⁷ Li	3/2	92.6	155.45 MHz	0.3
Sodium	²³ Na	3/2	100	105.8 MHz	0.1
Cesium	¹³³ Cs	7/2	100	52.5 MHz	5 10 ⁻²
Yttrium	⁸⁹ Y	1/2	100	19.6 MHz	1 10-4
Lanthanum	¹³⁹ La	7/2	99.9	52.8 MHz	3 10 ⁻²
Zirconium	⁹¹ Zr	5/2	11.2	37.2 MHz	1 10 ⁻³
Uranium	²³⁵ U	7/2	0.72	7.1 MHz	1 10-4

²³⁴U (0.005%) / ²³⁸U (99.3%)/ ²³²Th : I=0 'Ln'paramagnetiques

non observable par RMN

Catherine BESSADA , CEMHTI CNRS Orléans

RMN dans les fluorures de Lanthanide solides (RT)

La, Ce, Pr, Nd, Sm, Eu - Gd, Tb, Dy,Ho, Er, Tm, Yb, Lu + Y

```
Propriétés paramagnétiques des 
cations lanthanides trivalents Ln(III)
```

```
⇒ configuration électronique 4f^n
(n= 0 – 14)
```

```
    ⋆ La<sub>III</sub>, Y<sub>III</sub>, Lu<sub>III</sub> : pas d'ē non apparié
diamagnétiques
    ⋆ les autres Ln ont 1-7 ē non appariés
paramagnétiques
```

Effets importants sur le spectre RMN du noyau observé

Déplacement et élargissement importants

RMN dans les fluorures de Lanthanide solides (RT)

Catherine BESSADA, CEMHTI CNRS Orléans

Fluorures de lanthanides fondus (HT)

Espèces en présence
 (Chlorures, Bromures, Iodures)

XRD, Neutrons, Raman, MD...

LnX₃ : coordinence Octaédrique (LnX₆)³⁻
 LnX₃ – MX (M= Li, Na, K..) : fluors pontants les octaèdres pour les compositions riches en LnX3
 Ordre à moyenne distance
 G.Papatheodorou & al. → X (LnF₃) ≤ 0.25 octaèdres LnF₆³⁻

X (LnF₃) > 0.25 octaèdres LnF₆³⁻ distordus et connectés (edges sharing)

Raman HT

RMN dans les fluorures de Lanthanide fondus

Démarche :

Description la plus complète possible des systèmes « modèles » LaF_3 et YF₃- AlkF

→ ¹⁹ F	Point de vue de l'anion	F libre, connectivité
¹³⁹ La, ⁸⁹ Υ	Point de vue du cation Ln ³⁺	Coordinance, complexes
⁷ Li, ²³ Na, ³⁹ K	Point de vue de l'alcalin	Complexes, conductivité

Mesures *in situ* dans le fondu : interprétation d'après résultats dans le solide

Connaissance des structures cristallographiques, corrélation déplacement chimique mesuré structure (coordinance, pontants ou non pontants, symétrie...

¹⁹F dans KF-YF₃

RMN ¹⁹F LiF-YF₃

%molYF₃

100

80

70 50

40

30 20

10

0

YF₃/LiF

100/0

80/20

70/30

50/50

40/60

30/70

20/80

<u>10/90</u>

*

*

*

LiF

LiF-YF₃

RMN ¹⁹F KF-YF₃

Evolution de δ^{19} F : MF-LnF₃

Catherine BESSADA, CEMHTI CNRS Orléans

RMN ²³Na NaF-YF₃

Et les alcalins?

⁷Li : gamme de déplacements chimiques : quelques ppm

³⁹K : fréquence de résonnance tres basse – pas accessible avec notre sonde HT

²³Na

Diminution du δ^{23} Na sur tout le domaine de composition :

augmentation de « l'écrantage » autour du Na

 ⇒ le nuage électronique autour du Na devient plus symétrique

⇒ Interactions Na-F <a>> : Na⁺ plus
 « libres » Conductivité

Même type d'évolution pour NaF-LaF₃ et NaF-ThF₄

Solides Tamb

RMN⁸⁹Y MF-YF₃

v(⁸⁹Y) à 9.4 Teslas (19.6 MHz) Spin ¹/₂; abond. nat. 100%

Déplacements chimiques de ⁸⁹Y pour les différentes coordinances YF

Species	δ ^γ ,ppm
YF ₉ ^{6−}	-112
YF ₈ ⁵⁻	-54/-44
YF ₆ ³⁻	20.9

Liquides 850°C

$$M_{M}$$
 KF-YF₃
 M_{M} NaF-YF₃
 M_{M} LiF-YF₃
 -0 -20 -40 -60 -80 -100
(ppm)

Catherine BESSADA, CEMHTI CNRS Orléans

Catherine BESSADA, CEMHTI CNRS Orléans

Comparaison des évolutions de déplacements chimiques du ¹⁹F dans LiF-ThF₄ et LiF-LnF₃ (Ln = La, Ce, Sm, Lu, Y)

Evolution du signal RMN du ¹⁹F dans LiF-ThF₄- CaO

Evolution du signal RMN de ¹⁹F et ¹⁷O dans LiF-ThF₄- CaO

¹⁷**O** : le signal se déplace, devient plus intense

⇒ existence d'au moins deux espèces oxydées dans le liquide.

¹⁹F : le signal évolue à nouveau vers les déplacements chimiques
 plus élevées
 ⇒ influence du thorium.

Catherine BESSADA, CEMHTI CNRS Orléans

Conclusion

RMN in situ à haute température dans les fluorures fondus :

espèces complexes en présence et leur distribution

espèces oxyfluorées /dissolution/précipitation

modèles thèoriques/ thermodynamiques/ electrochimiques

- \rightarrow point de vue de l'anion ¹⁹F , ¹⁷O
- point de vue du cation ²⁷Al, ⁹³Nb, ⁸⁹Y, ¹³⁹La...⁹¹Zr
- →Point de vue de l'alcalin ²³Na
- Ln, Th, Zr : EXAFS HT

Très haut champ (750MHz) + Haute température « du solide au liquide »