Toward neutrino analysis with empty detector

Thomas Salagnac

> LPSC

12 October 2016

Simulation : Modification of the neutrino generator

Add possibility to generate neutrinos:

- in any kind of material
- in user specified volumes
- without solid angle distribution
\Rightarrow statistic in each volume will be only proportional to the number of H times the volume size

Modification of the tree which contains neutrino and IBD products information:

- Move " ν event" tree (NuTree) in the main output with "G4 events" tree (NCF) and "real data like" tree (Data)
- Number of entries in "neutrino event" tree will now match the number of "G4 event" entries
1ν event $=2$ (average) G4 events $=2$ entries in "nu events" (duplicated info.) \Rightarrow little extra of 160 Mo in output size for 1 M of ν event
\Rightarrow but easier to use
- First, cuts applied on single events: tag single events example : tag "prompt" and "delayed" events with energy cuts
- Search for coincidence : test every possible pairs as coincidence
- Cuts applied on single tag example : ask "prompt" tag for the first event and "delayed" tag for the last event
- Cut applied on delta time (check if delayed event is in the time window wrt prompt event time)
- Cut applied on the coincidence candidate example : ask for max charge in the same cell between prompt and delayed event
- Algorithm is also designed to work with multiple coincidences (nb of event >2)
- Not committed yet (soon)

Verification of the algorithm by simulation

Simulation of dummy events to check the algorithm for 10 days of data taking, with :

- 1000 Hz of fake prompt
- 6 Hz of fake delayed
- 400 evts/day of correlated

Estimation of average accidental rate using several coincidence selections with different shifted time windows from prompt event

Analysis "neutrino" run : rate

Run "neutrino" : without liquid scintillator

- $\sim 400 \mathrm{~Hz}$ of single rate
- trigger only in the inner detector
- threshold on charge sum of 4 PMTs: 20 PEs

No additional cut applied
Average rate of correlated coincidences $\sim 2,7 \pm 0.1 \mathrm{~Hz}$

Analysis "neutrino" run : delta time $\Delta \mathrm{T}$

$\Delta \mathrm{T}=$ time of delayed event - time of prompt event
$\Delta \mathrm{T}$ distribution for correlated $=$ coincidences - accidental (corrected from time shift)

1st afterpulse at $\sim 0.5 \mu \mathrm{~s}: \mathrm{H}^{+}$
2nd afterpulse between $[6-8] \mu \mathrm{s}: \mathrm{N}_{2}^{+}, \mathrm{Ar}^{+}, \mathrm{O}_{2}^{+}$or/and CO_{2}^{+} Exponential contribution ?

Analysis "neutrino" run : PMT multiplicity

PMT multiplicity $=$ number of PMTs which have seen a signal ($>$ CFD threshold)

Expect afterpulse events to have a PMT multiplicity $=1$
Cut on multiplicity >1 should remove after pulse

Analysis "neutrino" run : delta time with cut on multiplicity > 1

Correlated rate decreased of 50% after cut on multiplicity : $2,7 \pm 0.1 \mathrm{~Hz} \longrightarrow 1.4 \pm 0.1 \mathrm{~Hz}$

Exponential fit $=K . e^{-\Delta T / \tau} \Rightarrow \tau=2.10 \pm 0.06 \mu \mathrm{~S}$
Average muon survival-time in acrylic $\sim 2.17 \mu \mathrm{~s}$
Exponential contribution caused by "muon stop " in buffer

Analysis "neutrino" run : prompt charge distribution in veto

Select events with 90% of the total charge in the target and with PMT multiplicity > 1

Peak at 500 PEs caused by muon going through veto muon $\Rightarrow \sim 80 \%$ of prompt events Some events don't produce any signal in veto $\Rightarrow \sim 20 \%$ of prompt events

$$
\Rightarrow \text { Need to be investigating! }
$$

Analysis "neutrino" : delta time $\Delta \mathrm{T}$ vs prompt target charge Qtot

Prompt events in target without after pulse

Cut on delta time ΔT or cut on charge Qtot to reject correlated ?

Delayed events in target without after pulse

Cut on delta time ΔT or cut on charge Qtot to reject correlated ?

Simulation "neutrino" : acceptance of $\Delta \mathrm{T}$ threshold

Acceptance of coincidence events from IBDs versus lower threshold on delta time $\Delta \mathrm{T}$

Cut on lower delta time threshold has a big impact on the neutrino acceptance
\Rightarrow not really interesting to reject correlated coincidences

Simulation "neutrino" : acceptance of PMT Qtot threshold

Acceptance of prompt events from IBDs versus charge threshold by PMTs
Take into account only prompt events with a visible energy Evis $>2 \mathrm{MeV}$

For threshold of [60-90] PEs $\Rightarrow-0.5 \% / 10$ PEs
For threshold >100 PEs $\Rightarrow-2 \% / 10$ PEs

Simulation "neutrino" : acceptance of Qtot sum threshold

Acceptance of prompt events from IBDs versus sum of charge threshold on 4 PMTs
Take into account only prompt events with a visible energy Evis $>2 \mathrm{MeV}$

For threshold of [200-300] PEs $\Rightarrow-0.1 \% / 10$ PEs
For threshold > 100 PEs $\Rightarrow-1 \% / 10$ PEs

Conclusion

With empty detector and a threshold on 20 PEs for the sum of 4 PMTs :

- Correlated coincidences in Target + GC: 2.7 Hz
- ~ 50% afterpulses
- $\sim 50 \%$ of "muon stop" (cherenkov $+e^{+} / e^{-}$from muon decay)
- Afterpulse events easily removed with a cut on the PMT multiplicity >1
- "muon stop" events can be removed with a cut on the full charge >150 PEs

Work to do :

- Need to investigate "muon stop" events with undetected prompt in the veto
- Commit and integrate the coincidence algorithm in the analysis software (soon)

Backup

Different steps of coincidence search algo

A Read next event in preprocessed date file
B Apply cut on single event \rightarrow tag single event
C Store event in buffer, if event fit in time window for selection, go to step A
D Search for coincidence : with first event in buffer as prompt candidate
1 Apply single tag cut on prompt candidate, if cut fail go to step A
2 Use next event in buffer as delayed candidate
3 Apply time window cut between prompt and delayed candidates, if cut fail go to step 2
4 Apply single tag cut on delayed candidate, if cut fail go to step 2
5 Apply cut on full coincidence, if cut fail go to step 2
(e.g.: ask for max charge in the same cell between prompt and delayed event)

6 Store coincidence
7 If end of buffer not reach go to step 2
8 Pop out first event in buffer and go to step A

Simulation "neutrino" : acceptance of PMT Qtot threshold

Acceptance of prompt events from IBDs versus charge threshold by PMTs

Simulation "neutrino" : acceptance of Qtot sum threshold

Acceptance of prompt events from IBDs versus sum of charge threshold on 4 PMTs

