Système de vidange d'urgence : études de thermique et de criticité

DELPHINE GÉRARDIN, DANIEL HEUER, ELSA MERLE, AXEL LAUREAU, MICHEL ALLIBERT, CAROLE SEUVRE GROUPE MSFR, LPSC-IN2P3-CNRS, 53 RUE DES MARTYRS, 38026 GRENOBLE, FRANCE

ATELIER NEEDS MSFR

2 FEVRIER 2017

In2p3

UNIVERSITÉ Grenoble Alpes

Plan

Introduction

- Objectifs des études
- Description du système

. Etudes dans le réservoir de vidange

- Etudes de thermique dans le réservoir de vidange
- Géométrie du réservoir de vidange
- Etudes paramétriques de criticité dans le réservoir

II. Etudes dans le conduit et le collecteu

- Etudes de criticité dans le conduit de vidange
- Etudes de criticité dans le collecteur
- Etude de criticité dans le système de transfert

Conclusion & perspectives

Objectifs des études sur le système de vidange

- Les 3 fonctions de sûreté doivent être garanties dans chaque système du réacteur (EDS) y compris dans le système de vidange d'urgence
 - Le système doit être étanche
 - Le système doit être sous-critique en toute circonstance
 - Le réservoir doit être capable d'évacuer la puissance résiduelle efficacement même sur une longue période
- Objectifs de l'étude:

Description du système

- En cas de problème en cœur: vidange du combustible dans le réservoir de vidange d'urgence situé sous le cœur
- Déclenchement de la vidange
 - Systèmes actifs
 - Systèmes passifs activés par la température excessive du combustible (autres paramètres pour le déclenchement peut-être à définir)

Systèmes redondants et fiables

- Système de vidange d'urgence
 - Ouvertures en bas de la cavité cœur
 - Système de transfert (collecteur et conduit)
 - Réservoir de vidange

Réservoir de vidange

- Géométrie du réservoir de vidange
 - Réservoir hexagonal
 - Contient des barres de refroidissement hexagonales
 - Fluide de refroidissement (à définir)
 - ▶ Sel inerte (à définir)
 - Parois métalliques
 - Sel combustible stocké entre les barres de refroidissement
 - Block central et distributeur permettent de répartir le combustible
 - Nombre de couronnes = nombre de barres de refroidissement dans un rayon du réservoir

7 rows assembly

2 Février 2017

Réservoir de vidange

- Rôle du sel inerte :
 - Emmagasiner la chaleur sous forme de chaleur latente de fusion => matériau fusible
 - Diminuer la puissance à évacuer par le système de refroidissement
 - augmenter l'inertie thermique du système
 - Maintenir le sel combustible à l'état liquide plus longtemps

-

Atelier NEEDS MSFR

Plan

Introduction

- Objectifs des études
- Description du système

I. Etudes dans le réservoir de vidange

- Etudes de thermique dans le réservoir de vidange
- Géométrie du réservoir de vidange
- Etudes paramétriques de criticité dans le réservoir

II. Etudes dans le conduit et le collecteu

- Etudes de criticité dans le conduit de vidange
- Etudes de criticité dans le collecteur
- Etude de criticité dans le système de transfert

Conclusion & perspectives

Etudes préliminaires de thermique

- Calculs préliminaires en 1D
- Matériaux et paramètres utilisés pour la simulation
 - Puissance résiduelle dépendant du temps dans le combustible
 - ► Sel inerte: LiF-ZrF4
 - Convection prise en compte dans les sels (profil de conduction équivalent)
 - Matériau de structure: Hastelloy N

- Pour limiter l'amplitude des variation de température à la paroi et maintenir le combustible liquide pendant un mois
 - Epaisseur de sel combustible ≤ 5 cm
 - Epaisseur de sel inerte ≤ 7 cm ou ajout d'étrésillons métalliques pour augmenter le transfert thermique
- Calculs plus précis à venir (SIMMER et/ou codes CFD)

Considérations géométriques

- Nombre de couronnes choisi pour avoir un design relativement compacte
 - Hauteur du sel combustible inférieure à 3 m ;
 - Diamètre (du cercle inscrit) du système global inférieur à 10 m.

Capacité du réservoir choisie égale au double du volume de sel combustible en cœur soit 36 m³

9

2 Février 2017

Etudes de criticité dans le réservoir de vidange

Calculs de criticité

- Utilisation du code Monte Carlo SERPENT2
- Critère limitant :
 - k_{eff} < 0,95 valeur utilisée en conditions normales dans le bâtiment réacteur et pour la gestion des colis de déchets radioactifs
- Matériaux utilisés pour la simulation
 - Combustible : Composition initiale en cœur
 - Sel inerte : FLiNaK
 - Matériau de structure : Hastelloy N
 - Fluide de refroidissement : eau

Etudes de criticité paramétriques

- Paramètres fixés
 - Epaisseur des parois des barres de refroidissement: 3 cm
 - Nombre de couronnes : 5
- Configurations étudiées
 - Epaisseur de combustible (5cm, 7cm, 10 cm, 15 cm)
- Paramètre variable
 - Longueur du côté des barres de refroidissement

Toutes les configurations assurent la souscriticité avec une marge suffisante, même les plus contraignantes (15 cm de combustible)

Atelier NEEDS MSFR

Plan

Introduction

- Objectifs des études
- Description du système

. Etudes dans le réservoir de vidange

- Etudes de thermique dans le réservoir de vidange
- Géométrie du réservoir de vidange
- Etudes paramétriques de criticité dans le réservoir

II. Etudes dans le conduit et le collecteur

- Etudes de criticité dans le conduit de vidange
- Etudes de criticité dans le collecteur
- Etude de criticité dans le système de transfert

Conclusion & perspectives

Etudes dans le conduit et le collecteur

- Cas étudié : cas accidentel où un blocage empêche le combustible de s'écouler
 - Accumulation de combustible dans le conduit et le collecteur

Approche

- 1. Etude du conduit et du collecteur séparément
- 2. Etude du système de transfert dans sont ensemble

Etudes de criticité dans le conduit de vidange

- Géométrie du conduit de vidange
 - Cylindre 1 à 2 m de haut
 - Rayon entre 15 et 30 cm
 - Paroi de quelques centimètres

Cas extrêmes

Le conduit ne pose pas de problème de criticité en soi

- ► configurations étudiées : conduit rempli de combustible
 - Sans parois
 - Parois en Hastelloy N de 30 cm
- Les configurations envisages sont toujours dans la zone souscritique même avec une épaisseur de paroi de 30 cm

Etudes de criticité dans le collecteur

- Géométrie du collecteur :
 - Cône tronqué menant au conduit
- Couvercle ajouté pour simuler la réflexion sur les structures situées au dessus (Cœur, ...)
- 0,9 k-eff [-] 0,8 Collector diameter → Lid 0,7 Tilt angle thickness/ Depth of the 0,6 blockage in the 20 50 60 0 10 30 40 70 80 90 draining shaft Tilt angle [degree] Wall thickness Shaft diameter
- Paramètres fixés
 - Rayon du collecteur : 6 m
 - Volume du combustible : 18 m3 (rempli partiellement le collecteur)
 - Epaisseur de paroi : 30 cm
 - Paramètre variable :
 - Angle d'inclinaison du collecteur

Wall

Collector

Draining

shaft

Multiplication factor as a function of the tilt angle

Etudes de criticité dans le collecteur

- Configurations étudiées:
 - Cône simple : rayon nul
 - Cône tronqué : rayon de 50 cm
- 2 zones sous-critiques
 - Pour les petits angles
 - Cône simple plus contraignant
 - ► $k_{eff} < 0.95 \Leftrightarrow \theta < 16^{\circ} \Leftrightarrow H < 1.7 m$
 - Pour les grands angles
 - Cône simple moins contraignant
 - ► $k_{eff} < 0.95 \Leftrightarrow \theta > 89^\circ \Leftrightarrow H > 344 \text{ m}$

Multiplication factor as a function of the tilt angle

Géométrie sans conduit et avec un collecteur pentu est éliminée

Atelier NEEDS MSFR

Etudes de criticité dans le système de transfert

Objectif : déterminer s'il existe des conditions plus défavorables quand le combustible distribué entre collecteur et conduit de vidange

- Configuration étudiée:
 - Système de transfert dans son ensemble
 - Rayon du conduit 30 cm et 50 cm
 - Angle d'inclinaison 10°, 15°, 20°
- Paramètre variable
 - Profondeur du bouchon dans le conduit
 - blocage dans le conduit à une profondeur donnée
 - Ecoulement lent du combustible

Shaft radius \ tilt angle			10°	15°	20 °
30 cm	k _{eff,max}		0.90534	0.94298	0.96727
	Depth of blockage	the	70 cm	50 cm	50 cm
	Δρ		+767 pcm	+439 pcm	+270 pcm
50 cm	k _{eff,max}		0.91894	0.94792	0.96925
	Depth of blockage	the	130 cm	80 cm	70 cm
	Δρ		+3287 pcm	+1670 pcm	+984 pcm

Atelier NEEDS MSFR

Etudes de criticité dans le système de transfert

- Δρ : différence de réactivité entre la situation où tout le combustible est dans le collecteur et la configuration pour laquelle le k_{eff} est maximal
 - augmente avec le rayon du conduit
 - diminue avec l'inclinaison du collecteur
- Apport de réactivité pour un angle d'inclinaison inférieur à 15° n'entraine pas de dépassement de la limite k_{eff} < 0,95</p>

Shaft radius \ tilt angle			10°	15°	20 °	
30 cm	k _{eff,max}			0.90534	0.94298	0.96727
	Depth blockage	of e	the	70 cm	50 cm	50 cm
	Δρ			+767 pcm	+439 pcm	+270 pcm
50 cm	k _{eff,max}			0.91894	0.94792	0.96925
	Depth blockage	of e	the	130 cm	80 cm	70 cm
	Δρ			+3287 pcm	+1670 pcm	+984 pcm

Plan

- Objectifs des études
- Description du système

. Etudes dans le réservoir de vidange

- Etudes de thermique dans le réservoir de vidange
- Géométrie du réservoir de vidange
- Etudes paramétriques de criticité dans le réservoir

II. Etudes dans le conduit et le collecteu

- Etudes de criticité dans le conduit de vidange
- Etudes de criticité dans le collecteur
- Etude de criticité dans le système de transfert

Conclusion & perspectives

Conclusion & perspectives

- Réservoir de vidange
 - Configurations envisagées largement sous-critiques
 - Des études de thermique plus approfondies doivent être menées
 - Etudes détaillées des épaisseurs de combustible et de sel inerte (CFD/SIMMER)
 - ▶ Dimensionnement du système de refroidissement (Gaz ?) Stage printemps 2017
- Conduit de vidange et collecteur
 - Configurations du conduit de vidange envisage largement sous-critique
 - Seules les configurations du collecteur avec un angle inférieur à 15° satisfont le critère k_{eff} < 0,95</p>
- Le design n'est pas encore fixé => de nouveaux calculs doivent être faits si la configuration choisie est différente de celle étudiée

Merci pour votre attention

-

Atelier NEEDS MSFR

-

Back-up

-

Atelier NEEDS MSFR

-

Approach

Criticality computation

- Use of the Monte Carlo code SERPENT2
- Limiting criteria:
 - \blacktriangleright k_{eff} < 0,95 value used for normal conditions in fuel building and for radioactive package waste

Procedure used for the parametric studies

Geometry defined with fixed parameters and variable parameters: several configurations obtained by individually varying each parameter

Serpent input files generated automatically thanks to a code written in Java Serpent calculations have been automated for the variation of each parameter

2 Février 2017

Geometry construction procedure

Fixed parameters

- Fuel Salt volume $V_f = 18 \text{ m}^3$
- Draining tank capacity $2*V_f = 36 \text{ m}^3$
- External tank wall thickness: 20 cm
- Variable parameters
 - Water canal radius r_{water}
 - Inert salt layer thickness t_{inert salt}
 - Hastelloy wall thickness twall
 - Fuel salt layer thickness t_f
 - Number of rows n

Limiting value based on a reflection about thermal properties

Limited by the global draining tank size

Delphine GERARDIN

Atelier NEEDS MSFR

2 Février 2017

Geometry construction procedure

- Computed parameters:
 - Cooling rod radius (radius of inscribed circle diameter) $r = r_{water} + t_{inert \, salt} + 2t_{wall}$
 - Cooling rod side (radius of circumscribed circle) $a = \frac{2}{\sqrt{3}}$
 - Free surface of fuel salt $S_f = \sqrt{3}t_f(2r(3n^2 + n 2) + \frac{t_f}{2}(3n^2 4))$
 - Fuel height $h_f = \frac{Vf}{Sf}$
 - ► Radius of the external hexagonal structure: $R = \frac{r}{\sqrt{3}}(2 + 3 * n)$

Delphine GERARDIN

-

Atelier NEEDS MSFR

Parametric criticality study

Objective: study the impact of the water vaporization assimilated to a reduction of the water density

- ► Fixed parameter
 - ▶ Fuel salt layer thickness : 5 cm
 - Inert salt layer: 7 cm
 - ▶ Number of rows : 5
- Configurations studied
 - Wall thicknesses from 0 mm to 3 cm
- Variable parameter
 - ► Water density

Delphine GERARDIN

-

Atelier NEEDS MSFR

2 Février 2017

Collector geometry construction

- Collector geometry:
 - Truncated cone that leads to the draining shaft
 - Smallest radius correspond to the draining shaft radius r

- Fixed parameters:
 - Collector radius R = 6 m
 - Fuel salt volume V = 18 m³ (partly fill the collector)
- Variable: tilt angle θ
- Computed parameters
 - Collector height $H = (R-r)tan(\theta)$
 - Fuel radius $r_f = (\frac{3V}{\pi \tan(\theta)} + r^3)^{1/3}$
 - Fuel height $h_f = (r_f r) \tan(\theta)$