

Chimie pour le MSFR

Sylvie DELPECH, Davide RODRIGUES, Gabriela DURAN-KLIE

S. Delpech, D. Rodrigues, G. Duran-Klie

Molten Salt Fast Reactor (MSFR)

- Combustible nucléaire liquide
- Mélange de sels de fluorures fondus :
 LiF-ThF₄-(UF₄/UF₃) (77 19 4) mol%
- Cycle ²³²Th/²³³U

$$n + {}^{232}_{90}Th \longrightarrow {}^{233}_{90}Th \xrightarrow{\beta^{-}}{}^{233}_{91}Pa \xrightarrow{\beta^{-}}{}^{233}_{92}U$$
$$t_{1/2} {}^{233}Th = 22 \text{ minutes}$$
$$t_{1/2} {}^{233}Pa = 27 \text{ jours}$$

Température de travail: 700 – 900 °C

Retraitement du sel :
 «procédés pyrochimiques»

- Séparation et récupération de l'uranium
- Extraction et séparation des actinides et des produits de fission

Schéma du retraitement

Principe du retraitement

Modifications des degrés d'oxydation par modification du potentiel redox

S. Delpech, D. Rodrigues, G. Duran-Klie

S. Delpech, D. Rodrigues, G. Duran-Klie

S. Delpech, D. Rodrigues, G. Duran-Klie

 $\Delta E_{solvatation} = E^{\circ} - k * \log \gamma(Red) + k * \log \gamma(Ox)$

S. Delpech, D. Rodrigues, G. Duran-Klie

S. Delpech, D. Rodrigues, G. Duran-Klie

S. Delpech, D. Rodrigues, G. Duran-Klie

S. Delpech, D. Rodrigues, G. Duran-Klie

Atelier MSFR, AREVA-Lyon, février 2017

Préparation de UF₃ dans LiF-ThF₄

- Electrolyse à partir de U métal
 - A potentiel imposé

$$U(s) \rightarrow U^{3+} + 3e^{-}$$

Electrode de travail: U (électrolyse) et Mo (analyse) Electrode de référence : Pt Contre-electrode: graphite

S. Delpech, D. Rodrigues, G. Duran-Klie

Résultats: paramètres calculés pour

UF₃ et UF₄ dans LiF-ThF₄ à 650°C

	log γ	D (10 ⁻⁶ cm ² /s)
UF ₃	-0.6	2.7
UF ₄	-4.1	1.1

S. Delpech, D. Rodrigues, G. Duran-Klie

Distribution des halogènes dans le cœur du MSFR

Etape préconisée pour l'extraction des halogènes : Fluoration

Formes chimiques possibles de I: I⁻, I₂ (g), IF₅ (g), IO_3^- , IO_4^-

S. Delpech, D. Rodrigues, G. Duran-Klie

Diagramme thermodynamique de stabilité

de l'iode à 500°C

S. Delpech, D. Rodrigues, G. Duran-Klie

Etude électrochimique de l'iode (KI)

dans le FLiNaK à 500°C

- sans oxyde: oxydation de l⁻ en l₂ gazeux :
 - Extraction possible par fluoration
- en présence d'oxydes: oxydation de l'en iodate ou périodates solubles :
 - Pas d'extraction et pollution du sel par IO_3^- et/ou IO_4^-

Mise en évidence de la formation de l₂

dans le FLiNaK

S. Delpech, D. Rodrigues, G. Duran-Klie

Mise en évidence de la formation de l₂

dans LiF-ThF₄

LiF-ThF₄

Réaction électrochimique:

 $2I^{-} \rightarrow I_2(g) + 2e$

Réaction chimique avec O₂:

 $4I^{-} + O_2(g) + ThF_4 \rightarrow ThO_2 + 2I_2(g) + 4F^{-}$

S. Delpech, D. Rodrigues, G. Duran-Klie

Influence des oxydes sur la formation de I₂

(SIQUE NUCLÉAIR ORSAY

dans le FLiNaK à 500°C

S. Delpech, D. Rodrigues, G. Duran-Klie

Influence des oxydes sur la formation de I₂

dans le FLiNaK à 500°C

En présence d'oxydes, après électrolyse, le sel fondu contient des iodates ou périodates.

 Les iodates sont naturellement réduits dans le sel fondu : E_{sel} diminue dans le temps et on retrouve la coloration jaune caractéristique de l'iode dans les flacons laveurs.

- Par réduction, ils produisent l₂ puis l⁻
- Ils réagissent avec du bismuth liquide pour former I₂ et Bi(III) soluble.

Nécessité de faire une « pause » entre la fluoration et l'extraction réductrice pour que le potentiel du sel diminue

• Principe

Dans le cas du traitement du combustible MSFR:

$MF_x + xLi_{Bi} \leftrightarrow M_{Bi} + xLiF$

La sélectivité et l'efficacité de l'extraction sont régies par la quantité de Li dans le Bi (potentiel redox) et les volumes des deux phases.

• Etape n°1: Préparer les nappes métalliques liquides de Bi-Li de composition pré-définies Préparation par électrolyse du sel fondu LiCl-LiF (70-30 mol%) à 550°C

La simulation de la courbe E = f(t) montre une cinétique rapide de réduction de Li⁺ dans Bi

• Bi-Li (10 mol%) // LiF-ThF₄-UF₄-NdF₃ (≈ 77-23-0,2-0,1 mol%)

L'efficacité d'extraction tend vers une constante après 100 minutes.

Efficacités faibles.

Réduction simultanée du thorium dans le bismuth mais sa solubilité est faible (< 1 mol%).

Probablement formation d'un composé inter-métallique Bi-Th qui bloque l'interface.

• Modification des conditions expérimentales – extraction multi-étages

Pas de modification de l'efficacité. Grande reproductibilité des résultats. Extraction limitée par une étape cinétiquement lente.

S. Delpech, D. Rodrigues, G. Duran-Klie

• Extraction par électrolyse de LiF-ThF₄-NdF₃ sur Bi liquide à courant imposé

L'analyse des courbes E = f(t) enregistrées pour différents courants imposés et les analyses ICP-AES de la nappe de Bi après chaque électrolyse permet de construire une courbe i-E stationnaire pour les 3 éléments, Li, Th et Nd.

La relation de Nernst n'est pas en accord avec les courbes

 \rightarrow limitation cinétique

La quantité de Nd extrait dépend du potentiel imposé et du temps d'électrolyse.

 $N_{(Nd extracted)} = I (Nd)*t/3F$

Après 60 mn, efficacité = 1.5%

Electrolyse: option pour le procédé d'extraction

Influence du potentiel redox sur la réaction de corrosion

Mesures in-situ du potentiel et contrôle

$$E_{salt} = E^{\circ'}_{UF_4/UF_3} + \frac{2,3 RT}{F} \log \frac{[UF_4]}{[UF_3]}$$

 \succ Tests de corrosion en fonction de [UF₄]/[UF₃]

S. Delpech, D. Rodrigues, G. Duran-Klie

Merci pour votre attention

S. Delpech, D. Rodrigues, G. Duran-Klie