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A simple answer

When Luca kindly proposed me to give a talk titled Do virtual particles

really exist? I was strongly tempted to prepare the shortest talk ever:

NO

Any question?
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Sources of confusion

Soon after I realized that things are not so simple.

• The concept of virtual particles is largely used, both in didactical

practice and in divulgative science stuff;

• It’s used in reasearch too!

• In the end, what really means do virtual particles exist?

• That brings immediately to maybe deeper questions: do elementary

particles exist at all? What an elementary particle really is?

• It’s clear that we’ll quickly slide into metaphysics; in fact a question

about the existence of something is an ontological question.

• Luckily enough, I strongly believe that metaphysics, understood in the

proper way, is fundamental to physics.
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Semi–phylosophical introduction

WARNING! Just my definitions. I’am not a philosopher.

• Realism: an objective world, independent of human mind1,

perceptions and/or desires, exists out there;

• Naive Realism: our everyday experiences and perceptions can

fournish, even if only through a limiting procedure, striking analogies

able to capture and describe elements of reality whose phenomena

can be attained only by using extended senses (microscopes,

telescopes, LHC and so forth);

• Scientific Realism: our best scientific theories give true or

approximately2 true descriptions of observable and unobservable3

aspects of a mind–indepentent world.

1Which, by the way, is part of the world.
2Hic sunt leones.
3And here tigers too.
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We are...

• Realists: I hope so. . .

• Naive Realists: We cannot.4

• Scientific Realists: That’s my own position, even if I arrived here after

a contamination with (neo–)kantian ideas.

4See later.
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A bit of history

Leaving aside ancient phylosophical ideas, the first elementary particle

recognized as such was the electron. After Crookes, Schuster, Thomson

and other physicists work (1880-1900) it became clear that small bunches

of matter with a well defined mass m and an electric charge −e do in fact

exist inside atoms.

Looking for a mental representation of an electron, I think it was really

easy to consider the idea of a material point.

9



Why we cannot be Naive Realists (no more)

We all known the concept of material point. For example we know that,

under specific circumstances and approximations, even a planet can be

considered as a material point.

From a certain point of view, we can (at least, a physicist at the very

beginning of 20th century could) consider an electron like a very small

tennis–ball with some intrinsic properties: for example a well defined mass

m and an electric charge −e.

I know (to a certain extent, I’m not Federer) the behaviour of a

tennis–ball; limiting procedure → the electron behaves as a very very small

tennis–ball. My everyday experiences give me a striking and perfect

analogy to understand electrons.

But then. . .
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Problems with “classical” definition of an electron

Take the electron to be a sphere of radius a and electric charge −e
uniformly distributed over the surface. We can compute the energy of the

E.M. field generated by an electron at rest5

EEM =
e2

2a
→∞ when a→ 0

Well, energy is classically defined up to an arbitrary additive constant. But

you get also, assuming that all of the electron mass is given by EM effects,

m =
2e2

3ac2

a =
2e2

3mc2

But then relativistic inconsistencies come out. We cannot conceive an

electron as a small charged tennis–ball.
5See Feynman Lectures, vol II, chap 28.
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(My) scientific realism point of view (1/3)

Noumenon

Ding an sich

Thing-in-itself

Chose en soi

Cosa in sé

Phenomena (1)

Theory (1)

Tennis ball

6=
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Quantum days

There is of course much more.

It soon became clear that electrons, under some circumstances, show a

wave–like behaviour.

From an historical point of view all this started with a theoretical step (de

Broglie, Schrödinger), not with an experimental one.

Atomic spectra → Bohr atomic model → de Broglie, Schrödinger.
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Tunnel effect: classical particles point of view

V

E > V

E < V
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Tunnel effect: quantum waves point of view
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First quantum days, 2

But we know waves! What I mean is that we have a clear mental

representation of what a wave is. So, can we build a wave model of the

electron?

Unfortunately we cannot: we never detect an electron spread out a bit

here and a bit there. When we detect it, we always observe a single well

localized particle.

Moreover, Schrödinger equation is wrong from a relativistic point of view6.

6More on this later.
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(My) scientific realism point of view (2/3)

Noumenon

Ding an sich

Thing-in-itself

Chose en soi

Cosa in sé

Phenomena (2)

Theory (2)

Wave

6=
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So what an elementary particle is?

Since the first days of quantum mechanics (if not before) physicist had to

abandon what I called Naive Realism.

We were obliged to forget the picture of an elementary particle as a very

small and indivisible bunch of matter, or as a wave spread here and there.

As Wigner teach us, an elementary particle of mass m and spin s is an

irreducible representation (m, s) of the Poincaré group7. That’s what the

theory tells us, and that is what an elementary particle is: to the best of

our knowledge, up to now.

I think that this is the best example I can find of Scientific Realism.

7See for example P. Ramond, Field Theory. A modern primer, Second edition.
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(My) scientific realism point of view (3/3)

An electron is what it is.

Noumenon

Ding an sich

Thing-in-itself

Chose en soi

Cosa in sé

Phenomena

Theory

Electron

=
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Naive questions

The first naive questions we have to answer are: what on the earth a

virtual particle is? Where this concept come from?

To answer, we have to return to the glorious days of second quantization.

The first attempt to obtain a relativistic version of the Schrödinger

equation was the Klein–Gordon equation:

(� +m2)φ(x) = 0

It comes from the correspondence principle:

E2 = m2 + p2 (c = ~ = 1)

p→ −i∇ E → i ∂/∂t
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Second quantization 1/3

Unfortunatly we cannot interpret φ(x) as the wave–function of a single

particle:

• negative probabilities;

• negative energy states.

We can expect some trouble in the search for a relativistic and quantum

description of a point particle. Indeed, relativity associates a momentum

scale p = mc to a particle of mass m. But the uncertainty relations

∆x ·∆p ∼ ~ tell us that for length scales smaller than the Compton

wavelength λ = ~/mc, the concept of a point particle may suffer

difficulties. Analyzing the position of the particle with a greater accuracy

requires an energy momentum of the same order of the rest mass, thus

allowing the creation of new particles8.

8Itzykson–Zuber, Quantum Field Theory, page 46 of the first edition.
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Second quantization 2/3

The difficulties eventually led Dirac to his equation: but still problems with

negative energy states.

To write down a relativistic and quantum theory of elementary particle

physics we had to discard particles in favour of fields.

φ(x)→ scalar field, not wavefunction. We put the system in a box of

linear size L remembering that φ is not only a field, but an

operator–valued one.

Introduce commutation relations and Fourier expansion:

[φ(x, t), φ̇(x′, t)] = iδ(x− x′)

φ(x) =
∑
k

(
1

2V ωk

)1/2 [
a(k)e−ik·x + a†(k)eik·x

]
ωk = k0 =

√
k2 +m2
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Second quantization 3/3

We find harmonic oscillator commutation relations

[a(k), a†(k′)] = δk,k′

so that a(k) and a†(k′) are destruction and creation operators:

a†(k)|0〉 = |k〉
a(k)|k〉 = |0〉

Following the stardard path given by textbooks we arrive to the concept of

Feynman propagator.

Moreover, a particle becomes a quantum of the field, i.e. something

coming out from the vacuum when we act with a creation operator of the

given field.
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The tipical situation

Here

something

happens
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Warning!

To illustrate how these propagators arise, we shall consider qualitatively

nucleon–nucleon scattering. In this process there will be two nucleons but

no mesons present in the initial and final states (i.e. before and after the

scattering). The scattering, i.e. the interaction, corresponds to the

exchange of virtual mesons between the nucleons. The simplest such

process is the one–meson exchange9.

9Mandl–Shaw, Quantum Field Theory, pag. 55 of the first edition.
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The perturbative point of view

It seems that the best description we can give of this situation is a

perturbative one.

From this point of view: why shouldn’t a virtual particle exist? After all it

is created from the vacuum, in a vertex interaction, by a creation operator,

just like a real particle is.

It doesn’t respect energy–momentum dispersion relations, but who cares?

If we follow this path, it seems that in a perturbative solution of

interacting QFT the concept of virtual particle is unavoidable.

The problem is that we can end up with a virtual photon at rest. Can we

consider this strange animal a virtual photon, even if it is not detectable,

not even in principle?
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Ising model – 1/5

Let me (apparently) change subject: the Ising Model.

H = −
∑
〈x,y〉

σxσy − h
∑
x

σx σ = ±1
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Ising model – 2/5

Q =
∑
{σ}

e−βH

〈M〉 =
1

Q

∑
{σ}

(∑
x

σx

)
e−βH =

1

β

[
∂ lnQ

∂h

]
h=0

• Solved in d = 1: no phase transition;

• Solved in d = 2 at h = 0: second order phase transition;

• Not yet solved in d > 2;

• Most important quantities are critical exponents, because they are

universal.
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Ising model – 3/5

Critical exponents dictate the behaviour of the system near criticality:

〈σxσy〉 ∝ e−|x−y|/ξ ξ ∼ |T − Tc|−ν

〈σxσy〉 ∝ |x− y|η at T = Tc

And so on.

Scaling relations do exist: only two critical exponents are independent.

Let’s take ξ and η.
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Ising model – 4/5

Renormalization Group transformation:

φ(x) =
1

|B(x)|
∑

y∈B(x)

σy

Imagine you iterate the transformation (we start from an infinite lattice,

you can iterate as many times as you want). φ(x) becomes a real variable,

it’s no more restricted to ±1 values. Let’s pretend the nearest neighbour

coupling survive (with some renormalization, maybe): but the

transformation induces self–coupling for the φ field:

H =
∑
x

[
−

d∑
ν=1

φ(x)φ(x+ ν) + µφ2(x) + λφ4(x) + · · ·

]
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Ising model – 5/5

We can then use:

• translational invariance;

• redefinitions of the couplings µ, λ;

• continuum limit

and we obtain

H =

∫
ddx

{
1

2
[∂µφ(x)]

2
+

1

2
µ2
0φ

2(x) +
λ

4!
φ4(x)

}
This is the Landau-Ginzburg model for ferromagnetism. We know that it is

in the same universality class of the Ising model, so we can think to use a

perturbative expansion around the free case (λ = 0) in order to obtain the

critical exponents in the Ising universality class. It’s a very well known

procedure in Statistical Field Theory10.
10See for example G. Parisi, Statistical Field Theory.
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Statistical Field Theory 1/3

Let’s say we want to compute the two–point function

G̃(x) = 〈φ(x)φ(0)〉

in order to evaluate ν and η.

First of all, we can easily go to Fourier space:

G̃(x) =

∫
ddp

(2π)d
e−ip·xG(p)

Next we expand in powers of the coupling constant λ:

G(p) = G0(p) + λG1(p) + λ2G2(p) + · · ·

where

G0(p) =
1

p2 + µ2
0

Does it resemble something already known? Sure, it is the Euclidean

propagator of a free scalar particle of mass µ0.
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Statistical Field Theory 2/N

It comes out (not so surprisingly at this point) that you can organize your

perturbative computations with the aid of diagrammatic tools:

G1(p) ∝
p p
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Statistical Field Theory 3/N

In case you are wondering why they resemble so much Feynman diagrams:

it’s because they are Feynman diagrams.

You can still reorganize your computation considering only the so called

One–Particle–Irreducible diagrams. In this way you obtain

G(p) =
1

G−10 (p)− Σ(p)

where Σ(p), the self–energy, is of course a power series in λ. Then in

principle (I’m leaving aside details about renormalization) you can get ν

and η by looking at the behaviour of G(p) for p→ 0 and µ2 → 0, where µ

is some kind of renormalized mass.

But remember: we started from a spin system; we are studing

ferromagnetism. No particles at all from the very beginning. So, then:

why a perturbative diagrammatic tool should imply the existence of virtual

particles?
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Quantum Field Theory on a Lattice 1/N

Generating functional for a QFT:

Z =

∫
[Dφ] e−

i
~S[φ,∂νφ]

[Dφ] is the (generally not so well defined) functional measure, φ stands for

the collection of all fields entering in the theory, S is the classical action.

It is called generating functional because by functional differentiating

respect to external sources we can recover all the n–point functions of the

theory.

The expectation value of an observable A[φ, ∂νφ] is

〈A 〉 =
1

Z

∫
[Dφ]A[φ, ∂νφ] e−

i
~S[φ,∂νφ]
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Quantum Field Theory on a Lattice 1/3

Take as an example φ4 scalar theory.

L[φ, ∂µφ] =
1

2
∂µφ(x)∂µφ(x)− 1

2
m2

0φ
2(x)− λ0

4!
φ4(x)

S[φ, ∂µφ] =

∫
dtd3xL[φ, ∂µφ]

Now set t = −ix0 (Wick rotation). The metric becomes euclidean. The

euclidean Action is in fact an Hamiltonian:

SE =

∫
d4x

{
1

2
[∂µφ(x)]

2
+

1

2
m2

0φ
2(x) +

λ0
4!
φ4(x)

}
But this is exactly the same expression we saw before.
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Quantum Field Theory on a Lattice 2/3

In natural units (c = ~ = 1) we get

Z =

∫
[Dφ] e−SE

This is the canonical partition function of a statistical system.

A general result: a quantum field theory in d space–time dimensions can

be rewritten as a statistical field theory in d+ 1 space dimensions.

The theory has to be renormalized.

The first step is to regularize the theory, for example by using a lattice.

The lattice spacing a acts as an ultraviolet cut–off Λ ∼ 1/a.

[Dφ]→
∏
x

dφ(x) ∂νφ(x)→ φ(x+ ν)− φ(x)

a
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Quantum Field Theory on a Lattice 3/3

After some steps you obtain

S =
∑
x

{
−β
∑
ν

[ϕ(x)ϕ(x+ ν)] + ϕ2(x) + λ[ϕ2(x)− 1]2

}

The lattice spacing a has been absorbed in the definition of the lattice

field ϕ and of the lattice couplings (β, λ).

If now you send λ→∞ you obtain that ϕ2 = 1, and so

S = −β
∑
〈x,y〉

ϕ(x)ϕ(y)

which is the Ising Hamiltonian, including β = 1/T (I set k = 1).
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Lattice Gauge Theory 1/7

If you want to write a lattice gauge theory, with local invariance, you have

to implement a discrete parallel transport.

Let’s take QED as an example. Put free fermions on a lattice and

sobstitute (carefully) derivatives with finite differences. You’ll end up with

terms of this kind:

ψ̄(x)ψ(x+ µ)

ψ̄(x) ψ(x+ µ)

x x+ µ

Under a local gauge transformation this term will go into

ψ̄(x)e−iα(x)eiα(x+ν)ψ(x+ ν)

and the Lagrangian is no more invariant.
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Lattice Gauge Theory 2/7

Solution: define a new field, Uµ(x), which lives on the link (x, µ). This

field has values in the local symmetry group (in this case U(1)) so that

under a local gauge transformation it transforms in this way:

Uµ(x)→ eiα(x)Uµ(x)e−iα(x+µ)

ψ̄(x) ψ(x+ µ)Uµ(x)

x x+ µ

ψ̄(x)Uµ(x)ψ(x+ µ)→ ψ̄(x)Uµ(x)ψ(x+ µ)

The new term is invariant under local gauge transformation.
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Lattice Gauge Theory 3/7

Since I know that Uµ(x) is an element of the U(1) abelian group, let me

write it in this way:

Uµ(x) = eiag0Aµ(x)

where a is the lattice spacing and g0 is some not–yet specified constant.

Spoiler alert: since I know the story, I’ll start from the end (it’s easyer).

S =
a4

2g20

∑
x

∑
µ>ν

Re [Uµν(x)]

Uµν(x) = Uµ(x)Uν(x+ µ)U†µ(x+ ν)U†ν (x)
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Lattice Gauge Theory 4/7

x x+ µ

x+ µ+ νx+ ν

A plaquette.

If you now expand the exponentials

and send a→ 0 you obtain

S =
1

4g20

∫
d4xFµν(x)Fµν(x)

+O(a2)

with

Fµν(x) ≡ ∂µAν(x)− ∂νAµ(x)

In this way you can define a

covariant derivative on the lattice.
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Lattice Gauge Theory 5/7

Recipe to build a Lattice Gauge Theory from a QFT in the continuum:

• Wick rotate to Euclidean space;

• replace continuum with a mesh of points (a lattice);

• put matter fields on sites;

• put gauge fields on links as elements of the gauge group (not of the

algebra);

• replace gauge covariant derivative with gauge covariant finite

differences.

You are ready to put your theory on a computer and to do a Monte Carlo

simulation in order to extract non–perturbative observables.
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Lattice Gauge Theories 6/7

Z =

∫ {
D
[
U, ψ̄, ψ

]}
exp

(
−SW [U ]− ψ̄M [U ]ψ

)
Monte Carlo simulation: obtain equilibrium configurations through a

Markovian process, compute observables over these configurations.

A problem: it’s not so easy to represent anticommuting variables on a

computer.

Solution: Matthews–Salam formula:∫ {
D
[
ψ̄, ψ

]}
exp

(
−ψ̄M [U ]ψ

)
= detM [U ]

Z =

∫
{D [U ]} exp (−SW [U ] + Tr lnM [U ])
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Lattice QCD 7/7

When you do a simulation the effect of the quark field and of the gluon

field is taken into account automagically, in a non–perturbative way (or, if

you prefer, to all orders of perturbation theory).

So the question is: where virtual particles are in this game?
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(No–)Conclusions

From a perturbative point of view, it seems impossible to avoid the use of

virtual particle concept.

On the other hand, from a non–perturbative perspective you’ll never see

something like a virtual particle.
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Thanks
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