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42 Physics without time

2.3 General covariant form of mechanics

The quantities characterizing the initial and final state of affairs of a process are
of two kinds: the time t, and the variables q. From an instrumentalist perspective,
the tools we need to study the dynamics of the system are of two kinds: a clock
that measures t, and other instruments that measure q. We now build a formalism
where these two kind of quantities, t and q, are treated on the same footing.

q

t

�

By analogy, recall that a function q(t) can be ex-
pressed “parametrically” in terms of a couple of func-
tions

q(t) !
⇢

q(t),
t(t).

(2.45)

For instance, we can write the function q = t2/3 (where
t is treated as the independent variable) in terms of two
functions q = t

2, t = t

3 (where t is treated as one of
the dependent variables). The opposite is not always true: if q = sin t, t = cos t,
then q is not a proper function of t. Therefore the parametric representation is more
general than the q(t) representation of possible relations between the clock vari-
able t and the other variables q. We will see that this wider generality is demanded
by physics.

Of course, a parametric representation is largely redundant. In the example
above, q = f (t)2, t = f (t)3 defines the same motion q(t) for any invertible func-
tion f (t). Therefore a parametric representation of the motions carries a large re-
dundancy, which is to say, a large gauge invariance. This is the root of the large
gauge invariance of general relativity, namely diffeomorphism invariance.

Let us write the dynamics of a simple system in parametric form. The action

S [q] =
Z t0

t
dt̃ L (q(t̃), q̇(t̃)) (2.46)

can be rewritten as a functional of two functions, q and t by changing variable
t ! t(t)

S [q, t] =
Z

t

0

t

dt̃

dt(t̃)
dt̃

L
✓

q(t̃),
dq(t̃)/dt̃

dt(t̃)/dt̃

◆
. (2.47)

The motions (q(t), t(t)) that minimize this action determine motions q(t) that
minimize the original action.

Let us do this more concretely. Take for simplicity a Newtonian system, with
Lagrangian

L(q, q̇) =
1
2

mq̇2 � V(q). (2.48)

This gives the Newton equations of motion

d
dt

mq̇ = �rqV (2.49)
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“large” gauge invariance: redundancy of the parametrization
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(that is, F = ma). The parametric form of this system is given by the two variables
q(t) and t(t) evolving in t with Lagrangian

L(q, t, q̇, ṫ) =
1
2

m
q̇2

ṫ
� ṫV(q), (2.50)

where now the dot indicates the t derivative. The equations of motion of this La-
grangian are

q :
d

dt

m
q̇
ṫ

+ ṫ rqV = 0, (2.51)

t :
d

dt

 
�1

2
m
✓

q̇
ṫ

◆2
� V(q)

!
= 0. (2.52)

Equation (2.51) is exactly the Newton equation, while (2.52) is nothing else but
energy conservation, which is a consequence of the first equation. Thus the relation
between q and t is precisely the same as the original system.

The fact that the two equations are not independent indicates that this descrip-
tion of the system is partly redundant, namely there is gauge invariance. The
gauge is the arbitrariness in the choice of the parameter t along the motions. The
equation of motion and the action are invariant under the gauge transformations

q(t) ! q(t

0(t)) and t(t) ! t(t

0(t)) (2.53)

for any differentiable invertible function t

0(t). This means that t is pure gauge:
the physics is not in the specific function q(t) and t(t), but in the relation between
q and t determined parametrically by these functions.

The hamiltonian structure of this system is important. The momenta are

pt =
∂L
∂ṫ

= �1
2

m
✓

q̇
ṫ

◆2
� V(q) , (2.54)

pq =
∂L
∂q̇

= m
q̇
ṫ

, (2.55)

and if you try to invert these equations to express the velocities in terms of the
momenta, you see that this is not possible: the map (ṫ, q̇) ! (pt, pq) is not invert-
ible. The reason is that the image of this map is not the full (pt, pq) space, but a
subspace, determined by a constraint C(t, q, pt, pq) = 0. This is easily found from
the definition of the momenta

C = pt + Ho(pq, q) = 0, (2.56)

where

Ho(pq, q) =
p2

q

2m
+ V(q) (2.57)

is easily recognized as the hamiltonian of the unparametrized Newtonian system
we started from. The constraint states that the momentum conjugate to t is (minus)
the energy.
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ṫ

◆2
� V(q)

!
= 0. (2.52)

Equation (2.51) is exactly the Newton equation, while (2.52) is nothing else but
energy conservation, which is a consequence of the first equation. Thus the relation
between q and t is precisely the same as the original system.

The fact that the two equations are not independent indicates that this descrip-
tion of the system is partly redundant, namely there is gauge invariance. The
gauge is the arbitrariness in the choice of the parameter t along the motions. The
equation of motion and the action are invariant under the gauge transformations

q(t) ! q(t

0(t)) and t(t) ! t(t

0(t)) (2.53)

for any differentiable invertible function t

0(t). This means that t is pure gauge:
the physics is not in the specific function q(t) and t(t), but in the relation between
q and t determined parametrically by these functions.

The hamiltonian structure of this system is important. The momenta are
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� V(q) , (2.54)

pq =
∂L
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= m
q̇
ṫ

, (2.55)

and if you try to invert these equations to express the velocities in terms of the
momenta, you see that this is not possible: the map (ṫ, q̇) ! (pt, pq) is not invert-
ible. The reason is that the image of this map is not the full (pt, pq) space, but a
subspace, determined by a constraint C(t, q, pt, pq) = 0. This is easily found from
the definition of the momenta

C = pt + Ho(pq, q) = 0, (2.56)

where

Ho(pq, q) =
p2

q

2m
+ V(q) (2.57)

is easily recognized as the hamiltonian of the unparametrized Newtonian system
we started from. The constraint states that the momentum conjugate to t is (minus)
the energy.
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+ ṫ rqV = 0, (2.51)

t :
d

dt

 
�1

2
m
✓

q̇
ṫ
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ṫ

, (2.55)

and if you try to invert these equations to express the velocities in terms of the
momenta, you see that this is not possible: the map (ṫ, q̇) ! (pt, pq) is not invert-
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� ṫV(q), (2.50)

where now the dot indicates the t derivative. The equations of motion of this La-
grangian are

q :
d

dt

m
q̇
ṫ
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we started from. The constraint states that the momentum conjugate to t is (minus)
the energy.

44 Physics without time

What is the canonical hamiltonian H of the parametrized system defined by the
Lagrangian (2.50)? The Legendre transform from the Lagrangian gives the hamil-
tonian

H = q̇
∂L
∂q̇

+ ṫ
∂L
∂ṫ

� L (2.58)

and using the constraint we see immediately that

H = 0 (2.59)

where the constraint is verified. More precisely, the hamiltonian is proportional to
the constraint

H ⇠ C. (2.60)

This should not be a real surprise, since the hamiltonian generates evolution
in the evolution parameter in the action, namely in t, but a change in t is pure
gauge, and in the hamiltonian formalism the generator of a gauge transformation
vanishes (weakly).

This does not mean in any sense that the dynamics is “frozen”, or other simi-
lar absurdities that one sometimes reads. The dynamics of this system is the one
described by the Newton equation above. The vanishing of the canonical hamilto-
nian H only means that the dynamics is expressed in this formalism by the relation
between the dependent variables q and t, rather than by the individual evolution
of these in the gauge parameter t.

So, how does the hamiltonian formalism keep track of the information about
the physical evolution, if the hamiltonian vanishes? It does so by means of the
constraint

C(q, t, pq, pt) = 0 (2.61)

as follows. For any function on phase space we can compute the equations of mo-
tion in t by taking the Poisson brackets with the constraint

dA
dt

= {A, C} ; (2.62)

and we must supplement these with the constraint equation (2.61) itself and re-
member that the physics is not in the dependence of the variables on t but in
their relative dependence when t is eliminated.7 Thus C(q, t, pq, pt) allows us to
derive all observable correlations between variables. This is why this constraint is
sometimes called the “hamiltonian constraint”.

It is important to emphasise that in this formulation it is not necessary to iden-
tify one of the variables as the physical time, in order to compute the observable
correlations and derive predictions for the theory. The physical phase space is in-
terpreted as the space of the possible (solutions of the equations of) motions, rather

7 For the reader who likes more mathematical elegance, a formal symplectic treatment of this general-
ized form of the dynamics is described for instance in [Sundermeyer (1982)], and briefly developed
in the Complements of this chapter.
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The canonical hamiltonian vanishes and the dynamics is coded in the constraints. 

The dynamics does not describe the evolution of the gravitational field gμν(x)  
and other matter fields, as functions of x (this is just gauge),  
but rather the relative evolution of the fields with respect to one another.  

Special Relativity:

45 General covariant form of mechanics

than the space of the initial data, and the time variable is treated on the same foot-
ing as all other variables.

Is this construction artificial? It is not. In fact, we are already used to it: recall for
instance the case of a relativistic particle. We write the action in the form

S = m
Z

dt

q
ẋµ ẋ

µ

. (2.63)

The indices µ label four variables, but the system has only three degrees of free-
dom, and in fact this action is invariant under reparametrization of t. The hamil-
tonian is zero and the constraint reads

C = p2 � m2 = 0. (2.64)

In General Relativity the action is

S[g] =
Z

d4x
p

� det g R[g] (2.65)

and is invariant under any reparametrization of x. The canonical hamiltonian van-
ishes and the information about the dynamics is coded in the constraints. This
means that the dynamics does not describe the evolution of the gravitational field
g

µn

(x), and other matter fields, as functions of x (this is just gauge), but rather the
relative evolution of the fields with respect to one another.

We call “generally covariant”, or simply “covariant”, this generalised formula-
tion of mechanics. The first who understood the need of generalising mechanics
in this manner is Dirac [Dirac (1950)].

2.3.1 Hamilton function of a general covariant system

Let us get back to the parametrized system Lagrangian (2.50), keeping in mind
that this describes the same physics of a conventional Newtonian system with La-
grangian L(q, q̇) = 1

2 mq̇2 � V(q). What is the Hamilton function of the Lagrangian
(2.50)? By definition,

S(q, t, t, q0, t0, t

0) =
Z

tf

ti
dt L(qqtt,q0t0t0 , tqtt,q0t0t0 , q̇qtt,q0t0t0 , ṫqtt,q0t0t0) (2.66)

but we can change variables in the integral and rewrite this as

S(q, t, t, q0, t0, t

0) =
Z t0

t
dt̃

 
1
2

m
✓

dq
dt

◆2
� V(q)

!
= S(q, t, q0, t0). (2.67)

That is: (i) S(q, t, t, q0, t0, t

0) is independent of t and t

0

∂S
∂t

= 0 (2.68)

and (ii) its value is precisely equal to the Hamilton function S(q, t, q0, t0) of the
original Newtonian system! The Hamilton function of a general covariant system
does not depend on the evolution parameter, but only on the boundary values of
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The Hamiltonian operator is the generator of time translation

Time is pure gauge, the Hamiltonian operator vanishes

But again: no “frozen dynamics”, just relational evolution

44 Physics without time
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dA
dt

= {A, C} ; (2.62)

and we must supplement these with the constraint equation (2.61) itself and re-
member that the physics is not in the dependence of the variables on t but in
their relative dependence when t is eliminated.7 Thus C(q, t, pq, pt) allows us to
derive all observable correlations between variables. This is why this constraint is
sometimes called the “hamiltonian constraint”.

It is important to emphasise that in this formulation it is not necessary to iden-
tify one of the variables as the physical time, in order to compute the observable
correlations and derive predictions for the theory. The physical phase space is in-
terpreted as the space of the possible (solutions of the equations of) motions, rather

7 For the reader who likes more mathematical elegance, a formal symplectic treatment of this general-
ized form of the dynamics is described for instance in [Sundermeyer (1982)], and briefly developed
in the Complements of this chapter.
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3. The time flow is determined by the thermal state

3.1 The modular group as time

The hypothesis that we explore in this paper is that the notion of a preferred
“flowing” time has no mechanical meaning at the quantum generally covariant
level, but rather has thermodynamical origin. The idea that thermodynamics
and the notion of a time flow are deeply intertwined is as old as thermodynamics
itself, and we shall not elaborate on it here. To be clear, what we intend to
ascribe to thermodynamics is not the versus of the time flow. Rather, it is
the time flow itself, namely the specification of which one is the independent
variable that plays the physical role of time, in a fundamental general covariant
theory.

By thermodynamical notion we mean here a notion that makes sense on an
ensemble, or, equivalently, on a single system with many degrees of freedom,
when we do not have access to its full microscopic state, but only to a number
of macroscopic coarse-grained variables, and therefore we are forced to describe
it in terms of the distribution ρ of the microscopic states compatible with the
macroscopic observations, in the sense of Gibbs [18]. Notice that in field theory
we are always in such a thermodynamical context, because we cannot perform
infinite measurements with infinite precision. The observation that a fundamen-
tal description of the state of a field system is always incomplete, and therefore
intrinsically thermodynamical, in the sense above, is an important ingredient of
the following discussion.

In the context of a conventional non-generally covariant quantum field the-
ory, thermal states are described by the KMS condition. Let us recall this for-
malism. Let A be an algebra of quantum operators A; consider the 1-parameter
family of automorphisms of A defined by the time evolution

γtA = eitH/h̄ A e−itH/h̄ (20)

where H is the hamiltonian. From now on we put h̄ = 1. We say that a
state ω over A is a Kubo-Martin-Schwinger (KMS) state (or satisfies the KMS
condition) at inverse temperature β = 1/kbT (kb is the Boltzmann constant and
T the absolute temperature), with respect to γt, if the function

f(t) = ω(B(γtA)) (21)

is analytic in the strip
0 < Im t < β (22)

and
ω((γtA)B) = ω(B(γt+iβA)). (23)

Haag, Hugenholtz and Winnink [19] have shown that this KMS condition re-
duces to the well known Gibbs condition

ω = Ne−βH (24)
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II. A PRELIMINARY CONJECTURE

To start with, consider classical mechanics. Quantum
theory is discussed in the last section. It is convenient
to use Gibbs’ formulation of statistical mechanics rather
than Boltzmann’s, because Boltzmann takes for granted
the split of a system in a large number of equal subsys-
tems (the individual molecules), and this may precisely
o↵uscate the key point in the context of general relativity
and quantum field theory, as we shall see.

Consider a classical system with many degrees of free-
dom in a (“microscopic”) state s, element of a phase
space �, evolving in time as s(t). Let {An}, be a set
of (“macroscopic”) observables –real functions on �–, la-
beled by the index n. This set defines a coarse graining.
That is, it partitions � in unequal regions where the An

are constant. The largest of these regions is the equi-
librium region. The entropy of a state s can be defined
as the volume of the region where it is located. With
a (suitably normalized and time invariant) measure ds,
entropy is then

SAn = log

Z

�
ds0

Y

n

�(An(s
0)�An(s)), (1)

where the family of macroscopic observables An is indi-
cated in subscript to emphasise that the entropy depends
on the choice of these observables. Notice that this defi-
nition applies to any microstate.1

As the microstate s evolves in time so does its entropy

SAn(t) = log

Z

�
ds0

Y

n

�(An(s
0)�An(s(t))). (2)

Boltzmann’s H-theorem and its modern versions imply
that under suitable ergodic conditions if we fix the choice
of the macroscopic observables An, for most microstates
out of equilibrium at t0, and for any finite �t, we have
SAn(t0 +�t) > SAn(t0) irrespectively of the sign of �t.

I want to bring the attention, instead, on the depen-
dence of entropy on the family of observables, and enun-
ciate the following first conjecture. If the system is suf-
ficiently complex and ergodic, for most paths s(t) that
satisfy the dynamics and for each orientation of t, there
is a family of observables An such that

dSAn

dt
� 0. (3)

In other words, any motion appears to have initial low
entropy (and non decreasing entropy) under some coarse
graining.

1 This equation defines entropy up to an an additive factor, be-
cause phase space volume has the dimension of [Action]N , where
N is the number of degrees of freedom. This is settled by quan-
tum theory, which introduces a unit of action, the Planck con-
stant, whose physical meaning is to determine the minimum em-
pirically distinguishable phase space volume, namely the maxi-
mal amount of information in a state. See [7].

FIG. 1. The same history, seen with di↵erent filters: for a
filter seeing the yellow balls that are on the right at time ta,
entropy is low at ta. A filter that sees the red balls on the left
at tb defines an entropy low at tb. Since the direction of time
flow is determined by increasing entropy, time flows in a dif-
ferent direction with respect to the two di↵erent observables.

The conjecture become plausible with a concrete ex-
ample. Consider a set ⌃ of N distinguishable balls that
move in a box, governed by a time reversible ergodic dy-
namics. Let the box have an extension x 2 [�1, 1] in
the direction of the x coordinate, and be ideally divided
in two halves by x= 0. For any given subset � ⇢ ⌃ of
balls, define the observable A� to be the mean value of
the x coordinate of the balls in �. That is, if xb is the x
coordinate of the ball b, define

A� =

P
b2� xbP
b2� 1

. (4)

Let s(t) be a generic physical motion of the system,
say going from t= ta to t= tb > ta. Let �a be the set
of the balls that are at the right of x=0 at t= ta. The
macroscopic observable Aa ⌘ A�a defines an entropy that
in the large N limit and for most motions s(t) satisfies

SAa(t)

dt
� 0. (5)

This is the second law of thermodynamics.
But let’s now fix the motion s(t), and define a di↵erent

observable as follows. Let �b be the set of the balls that
are at the left of x=0 at t= tb. The macroscopic observ-
able Ab ⌘ A�b defines an entropy that is easily seen to
satisfy

SAb(t)

dt
 0. (6)

This is again the second law of thermodynamics, but now
in the reversed time �t. It holds for the generic motion
s(t), with a specific observable.
This is pretty obvious: if at time ta we ideally color in

yellow all the balls at the right of x= 0 (See Figure 1),
then the state at ta is low entropy with the respect to
this coarse graining, and the motion mixes the balls and
raises the entropy as t moves from ta to tb. But if instead
we color in red the balls that are at the left of x=0 at the
time tb, then the reverse is true and entropy increases in
the reverse t direction.
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