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Why neutrino mass & oscillation? ]

= Higgs boson for electroweak symmetry breaking & mass.

«= Chiral symmetry breaking for mass.

= The world seems not affected by the tiny neutrino mass!

= Neutrino mass = Mixing

w= 3 Neutrino = possible CP violation

== CP violation = Leptogenesis

w= | eptogenesis = Matter-Antimatter Asymmetry
= There is something left in the Universe.

= Baryogenesis from quark mixing is not enough.
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v Oscillation Data J

(for NH) —1lo Best Value +1lo
Am? = Am?, (107%eV?) 7.33 7.50 7.69
|Am2 = Am?,| (10—3eV?) 2.484 2.524 2.563
sin? 6, (0s = 01,) 0.294 (32.81°) 0.306 (33.56°) 0.318 (34.33°)
sin2 6, (0, = 623) 0.4200 (40.4°) 0.441 (41.6°)  0.468 (43.1°)

sin® 6, (6, = 613) 0.02091 (8.41°) 0.02166 (8.46°) 0.02241 (8.61°)

Op, Omi 7,77 7,77 7,77

Esteban, Gonzalez-Garcia, Maltoni, Martinez-Soler & Schwetz, arXiv:1611.01514

Shao-Feng Ge (MPIK); 2017-5-22 @ LPSC Grenoble, France The Leptonic CP Phases



Evidence of y—7 Symmetry |

= Two small deviations (1o level):
—3.5° < 0, —45° < 5.8° 8.4° < 0, <9.2°

with Best Fit Value: 6, — 45° = —-3.9° & 6, = 8.8°.

= Zeroth Order Approximation:

0, ~45°, 6, ~ 0°.

= CP & p—7 Symmetric Mass Matrix:

A B B
MO = C D
C

Mohapatra & Nussinov [hep-ph/9809415], Lam [hep-ph/0104116]
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Horizontal Symmetry [Lam, PRL101:121602(2008), PRD78:073015(2008)]J

= Mass Matrix M,, invariant under Transformation:

GIM,G, =M,
== Diagonalization:

vIM,v, =D,
= Rephasing:

D, =d'D,d,

withd2 =13 = d, = diag(+, £, $).
= Together

M, = G/M,G,=G'V:D,VIG,
= V:D, VI =v:dID,d, V]

== Consequence: VLGV = d,,V,‘: S| G, = V,,d,,Vl

= For Leptons: F, = nggVZ with dp = diag(e'P1, e'P2, e1%3).
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Sym metry V.S. Mixing [Lam, PRL101:121602(2008), PRD78:073015(2008)]J

= Two Nontrivial Independent possibilities of d,:

d = diag(—1,1,1), d@ =diag(1,-1,1), dP¥ =_—-dMd?.

= g parameterized in terms of k: |tanf; = \/2/k

k V2

AF A Pl k=2 6, =353 [TBM]
Vilk)= | vare o) V2 k=23 6,=337°
1 k 1
V2+k2 \/2(24k?) ﬁ k = \/6 95 = 30.0°

= Two Independent Symmetry Transformations G; = V,,d,(,i)V:r,

L (2-K 2k 2 10 0
G = > k 2. =10 0 1
L2tk o1 o

v 78(xZ3) X ZHT = G = {E, Gy, Ga(= G1G3), G3}
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Full v.s. Residual [Lam, PRL101:121602(2008), PRD7B:O73015(2008)]J

= Full Symmetries:

H=GxF g F
Sa 75 x 78T Zs={I,F,F%}

{G17 G37 F} Gl(G2)7 G3 F= dlag (17w7w2)

Bottom-Up 1 | Top-Down
See also Smirmov et. al., 1204.0445, 1212.2149, 1510.00344
= Residual Symmetries:
vii G=125(Z3) x 2" for d =diag (£1,+1,41)
G FeUl)xU() for df=diag (e, e2 el)
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Residual Symmetry as Effective Theory )

= Full symmetry HAS TO be Broken!

«= Fermion needs to acquire mass.

w= Non-trivial mixing | Vpyns = Vg V,

= |f mixing is TRUELY determined by symmetry, it has to be
residual symmetry

w= VVEVs

«= Yukawa couplings

= | Residual Symmetry as Custodial Symmetry‘

«= Gauge symmetry has to be broken. Otherwise, no mixing.

«= Weak mixing angle is a function of gauge couplings, which cannot
be dictated by gauge symmetry (and VEV).

== \Weak mixing angle is related to the physical observables, the
gauge boson masses, by custodial symmetry.
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Example Zee-A; Model

hep—ph/0508278J

= Lepton’s Representation:

er ERN]. ©®1
po| ~3, wpr~1, @] ~3.
TL TR ~ 1" 3

= A, invariant Lagrangian:
Ly = yier(lple + lohr + 1pln)
+ yoir(wele + 1phn + w?pln)
+ y3?R(w2<pJ{eL + lgogn + wgogn) :
= Mass term with (p;) = v;:

Y1 1 1 Vi e
L= (ER IR 7R] y2 w 1 w? V2 i
y3 w2 1 w v J| 7L

W
I
Vi =V) =V3 =V = U&R =1, UE,L(W)y my i =Yiv.

Yi=Y2=Yy3=Y = Uy =1, Ugr(w), my; =yv.
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Prediction of Large 6p by Z5 and ZZ
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1o Indication for 6p = —74°(—110°) [Schwetz et.al. 1108.1376]
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Dirac CP Phase Measurement
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CP Measurement @ Accelerator Exps )

= T2K
= NOvA
NOVA Far Detector (Ash River, IVIN)
& MINOS Far DetectsilSoudan, M)
LPsE

DUNE, T2KII/T2HK/T2KK/T2KO, MOMENT /ADS-CI, Super-PINGU

Shao-Feng Ge (MPIK); 2017-5-22 @ LPSC Grenoble, France The Leptonic CP Phases



The Dirac CP Phase 6p @ Accelerator Exp )

. . SM2 R -
= To leading order in o = ‘5M§1| ~ 3%, the oscillation probability
31

relevant to measuring dp @ T2(H)K,

Poysve 42 c?s%sin? 3
Tp—Te

- 8casac,25,csss sin ¢21sin 31 [cos dpcos P31Esin dpsin 3]

2
EmijL

for v & U, respectively. [¢y = E]

= v, — v, Exps measure sin?(26,) precisely, but not sin? @,.

= Run both v & 7 modes @ first peak [p31 = 7, 21 = 7],
Py, 5. + Pu,—v. = 2s2c2s?

a~r=ro

Py, . — Py, —v. = amsin(20s)sin(20,)sin(26,) cos 0, sin dp .
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The Dirac CP Phase dp @ Accelerator Exp

Accelerator experiment, such as T2(H)K, uses off-axis beam to compare
Ve & T, appearance @ the oscillation maximum.

= Disadvantages:

= Efficiency:
< Proton accelerators produce v more efficiently than 7 (¢, > o7).
== The U mode needs more beam time [Tz : T, =2:1].

< Undercut statistics = Difficult to reduce the uncertainty.

== Degeneracy:
== Qnly sin dp appears in PV}L_”-’e & P;“_me.
= Cannot distinguish dp from 7 — Jp.

OP,e
9dp

#= CP Uncertainty x cosdp = A(dp) x 1/ cosdp.

= Solution:
Measure 7 mode with y* decay @ rest (uDAR)
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uDAR 7 Oscillation Experiments

v= A cyclotron produces 800 MeV proton beam @ fixed target.
= Produce 7% which stops &

= 7~ is absorbed,

w= 1 decays @ rest: w7 — pt 4 v,
= T stops & decays @ rest: pt — et + U, + ve.

uDAR Spectrum

1~ ]
vi ..... _."'-;r;:__-.-'ﬂ"’:}:ﬂ’
B .".jﬂ;fﬂ‘f
o
K e
) 10 20 30 40 50 60
E, [MeV]

= 7, travel in all directions, oscillating as they go.
= A detector measures the v, from v, — v, oscillation.
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Accelerator + DAR Experiments

Combining v, — v, @ accelerator [narrow peak @ 550 MeV] &
U, — Ve @ uDAR [wide peak ~ 45 MeV] solves the 2 problems:
== Efficiency:
w= 7 @ high intensity, uDAR is plentiful enough.

w= Accelerator Exps can devote all run time to the v mode. With same
run time, the statistical uncertainty drops by V3.

= Degeneracy: (decomposition in propagation basis [1309.3176])

decomposition coefficients for cosd and sind at T2(H)K [295 km] decomposition coefficients for cosd and sind at uDARTS
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~. oos ) foke b= — -
o ‘. T~ 0.05 I | far detector [30 km]: coeff of cosd - = = - -
/ t i~ N \ sin§ — - -
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New Proposals |

1 uDAR source + 2 detectors

Advantages:
= Full (100%) duty factor!

== Lower intensity: ~ 9mA [~ 4X lower than DAESALUS]

= Not far beyond the current state-of-art technology of cyclotron
[2.2mA @ Paul Scherrer Institute]

= MUCH cheaper & technically easier.
= Qnly one cyclotron.

«= | ower intensity.

Disadvantage?
«= A second detector!
«= DAR with Two Scintillators («DARTS) [1401.3977]

«= Tokai 'N Toyama to(2) Kamioka (TNT2K) [1506.05023]
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TNT2K J

== 1DAR is also useful for material, medicine industries in Toyama
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Event Sha pe QT NT2 K Evslin, Ge & Hagiwara [1506.05023]J

SK([6 years] (L = 15km) WHK [6 years] (L = 15+8km)

o
i i
4 Mm i ‘ 1

Expected uDAR IBD signal from 6 yrs of running @ SK (15km) & HK
(23km) W|th NH Simulated by NuPro, http://nupro.hepforge.org/
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5[) Precision @ TNT2K Evslin, Ge & Hagiwara [1506.05023]J
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Simulated by NuPro, http://nupro.hepforge.org/
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5[) Precision @ TNT2K Evslin, Ge & Hagiwara [1506.05023]J
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Simulated by NuPro, http://nupro.hepforge.org/
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Majorana CP Phase Measurement
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Preference of NH = Non-Observation of 00257 )

Oscillation + CMB Oscillation + CMB + EUCLID
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Any chance of obtaining some information? )

Im A Majorana Triangle
Iy
L 3
Sair M3 .
o L2 Re
o
12
- = =

(Myee = L1+ Lo+ L3,
with

=m U§1 = m1c2c2e"SMl

maU% = \/m? + Am2c?s? |
=mU% = \/m? + Am2s?elovs

L&l =l
I
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Determine 2 Majorana Phases Simultaneously

J

dmsz[Degree]

180 °

135°

90°

Ly — L3| < L < Ly + Ls.

2 2 2 2 4 4 2 4 4 2.4
Li+L5—-L3  mic/cs + msc/ sy — m3s,
cos du1 — = - ) )
2L1L2 2m1m2C, Cs S
2 2 2 2 4 4 2 44 2.4
_ L1 -L5-L3 | mic/cg —mycsg — mss;
cosdnz = = 5
2L2L3 2m2m3C, SpSg
180 ° T T T T
1 \‘\ —Om1
= *mi=3meV | g‘ 135° |- \\s“ 1
1 ® R
mi=4meV| G S
r 1 o 90°F SSIm3 i
omi=5meV 2 NS
s "
L 40 s ~ i
oM;=6meV \\ ]
‘ | L O]
PEO 2I.85‘ ‘190”‘ ‘195”‘ - 200“’ - ‘205; - ‘210” 02 3 4 5 6 7
om1[Degree] mi[meV]

Shao-Feng Ge (MPIK); 2017-5-22 @ LPSC Grenoble, France

The Leptonic CP Phases



Uncertainties from Oscillation Parameters
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Uncertainties from Oscillation Parameters J
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Uncertainties from Oscillation Parameters
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Majorana Pyramid )
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Prey of Leptonic CP Phases

Majorana Pyramid



Thank You!
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