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Why neutrino mass & oscillation?

Higgs boson for electroweak symmetry breaking & mass.

Chiral symmetry breaking for mass.

The world seems not affected by the tiny neutrino mass!

Neutrino mass ⇒ Mixing

3 Neutrino ⇒ possible CP violation

CP violation ⇒ Leptogenesis

Leptogenesis ⇒ Matter-Antimatter Asymmetry

There is something left in the Universe.

Baryogenesis from quark mixing is not enough.
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ν Oscillation Data

(for NH) −1σ Best Value +1σ

∆m2
s ≡ ∆m2

12 (10−5eV2) 7.33 7.50 7.69

|∆m2
a ≡ ∆m2

13| (10−3eV2) 2.484 2.524 2.563

sin2 θs (θs ≡ θ12) 0.294 (32.81◦) 0.306 (33.56◦) 0.318 (34.33◦)

sin2 θa (θa ≡ θ23) 0.4200 (40.4◦) 0.441 (41.6◦) 0.468 (43.1◦)

sin2 θr (θr ≡ θ13) 0.02091 (8.41◦) 0.02166 (8.46◦) 0.02241 (8.61◦)

δD, δMi ?, ?? ?, ?? ?, ??

Esteban, Gonzalez-Garcia, Maltoni, Martinez-Soler & Schwetz, arXiv:1611.01514
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Evidence of µ–τ Symmetry

Two small deviations (1σ level):

−3.5◦ < θa − 45◦ < 5.8◦ 8.4◦ < θr < 9.2◦

with Best Fit Value: θa − 45◦ = −3.9◦ & θr = 8.8◦.

Zeroth Order Approximation:

θa ≈ 45◦, θr ≈ 0◦.

⇒ CP & µ–τ Symmetric Mass Matrix:

M(0)
ν =


A B B

C D
C


Mohapatra & Nussinov [hep-ph/9809415], Lam [hep-ph/0104116]
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Horizontal Symmetry [Lam, PRL101:121602(2008), PRD78:073015(2008)]

Mass Matrix Mν invariant under Transformation:

GT
νMνGν = Mν

Diagonalization:
VT
νMνVν = Dν

Rephasing:
Dν = dT

νDνdν

with d2
ν = I3 ⇒ dν = diag(±,±,±).

Together

Mν = GT
νMνGν = GT

νV∗νDνV†νGν

= V∗νDνV†ν = V∗νdT
νDνdνV†ν

Consequence: V†νGν = dνV†ν ⇔ Gν = VνdνV†ν

For Leptons: F` = V`d`V
†
` with d` = diag(eiβ1 , eiβ2 , eiβ3).
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Symmetry v.s. Mixing [Lam, PRL101:121602(2008), PRD78:073015(2008)]

Two Nontrivial Independent possibilities of dν :

d(1)
ν = diag(−1, 1, 1), d(2)

ν = diag(1,−1, 1), d(3)
ν = −d (1)

ν d (2)
ν .

θs parameterized in terms of k: tan θs =
√

2/k

Vν(k) =


k√
2+k2

√
2√

2+k2
0

1√
2+k2

k√
2(2+k2)

−1√
2

1√
2+k2

k√
2(2+k2)

1√
2


k = 2 θs = 35.3◦ [TBM]

k = 3√
2

θs = 33.7◦

k =
√

6 θs = 30.0◦

Two Independent Symmetry Transformations Gi = Vνd
(i)
ν V†ν

G1 =
1

2 + k2

2− k2 2k 2k
k2 −2

k2

 , G3 =

1 0 0
0 0 1
0 1 0


Zs

2(×Zs
2)× Zµτ2 ≡ G = {E,G1,G2(≡ G1G3), G3}
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Full v.s. Residual [Lam, PRL101:121602(2008), PRD78:073015(2008)]

Full Symmetries:

H ≡ G ×F G F
S4 Zs

2 × Zµτ2 Z3 ≡ {I ,F ,F 2}

{G1,G3,F} G1(G2),G3 F ≡ diag (1, ω, ω2)

Bottom-Up ⇑ ⇓ Top-Down

See also Smirnov et. al., 1204.0445, 1212.2149, 1510.00344

Residual Symmetries:

νi: G ≡ Zs
2(Zs

2)× Zµτ2 for d i
ν = diag (±1,±1,±1)

`i: F ∈ U(1)× U(1) for d i
` = diag (e iβ1 , e iβ2 , e iβ3)
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Residual Symmetry as Effective Theory

Full symmetry HAS TO be Broken!

Fermion needs to acquire mass.

Non-trivial mixing VPMNS = V †` Vν

If mixing is TRUELY determined by symmetry, it has to be
residual symmetry

VEVs

Yukawa couplings

Residual Symmetry as Custodial Symmetry

Gauge symmetry has to be broken. Otherwise, no mixing.

Weak mixing angle is a function of gauge couplings, which cannot
be dictated by gauge symmetry (and VEV).

Weak mixing angle is related to the physical observables, the
gauge boson masses, by custodial symmetry.
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Example Zee-A4 Model hep-ph/0508278

Lepton’s Representation:
eL
µL
τL

 ∼ 3 ,
eR ∼ 1
µR ∼ 1′

τR ∼ 1′′
,


ϕ1

ϕ2

ϕ3

 ∼ 3 .

A4 invariant Lagrangian:

L` = y1eR(1ϕ†1eL + 1ϕ†2τL + 1ϕ†3τL)

+ y2µR(ωϕ†1eL + 1ϕ†2τL + ω2ϕ†3τL)

+ y3τR(ω2ϕ†1eL + 1ϕ†2τL + ωϕ†3τL) .

Mass term with 〈ϕi 〉 = vi :

L` =
eR µR τR


y1

y2

y3




1 1 1
ω 1 ω2

ω2 1 ω




v1

v2

v3



eL
µL
τL

 .

v1 = v2 = v3 = v ⇒ U`,R = I ,
||

U`,L(ω), m`,i = yiv.
y1 = y2 = y3 = y ⇒ U`,L = I , U`,R(ω), m`,i = yvi.
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Prediction of Large δD by Zs
2 and Zs

2

cos δD =
(s2s − c2s s

2
r )(c2a − s2a )

4casacssssr
cos δD =

(s2s s
2
r − c2s )(c2a − s2a )

4casacssssr
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1σ Indication for δD = −74◦(−110◦) [Schwetz et.al. 1108.1376]
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Dirac CP Phase Measurement
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CP Measurement @ Accelerator Exps

T2K

NOνA

DUNE,T2KII/T2HK/T2KK/T2KO, MOMENT/ADS-CI, Super-PINGU
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The Dirac CP Phase δD @ Accelerator Exp

To leading order in α =
δM2

21

|δM2
31|
∼ 3%, the oscillation probability

relevant to measuring δD @ T2(H)K,

P νµ→νe
νµ→νe

≈4s2
ac

2
r s

2
r sin2φ31

−8casac
2
r srcsss sinφ21sinφ31 [cos δDcosφ31±sin δDsinφ31]

for ν & ν, respectively. [φij ≡
δm2

ijL

4Eν
]

νµ → νµ Exps measure sin2(2θa) precisely, but not sin2 θa.

Run both ν & ν modes @ first peak [φ31 = π
2 ,φ21 = απ2 ],

Pνµ→νe + Pνµ→νe = 2s2
ac

2
r s

2
r ,

Pνµ→νe − Pνµ→νe = απ sin(2θs) sin(2θr ) sin(2θa) cos θr sin δD .
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The Dirac CP Phase δD @ Accelerator Exp

Accelerator experiment, such as T2(H)K, uses off-axis beam to compare
νe & νe appearance @ the oscillation maximum.

Disadvantages:

Efficiency:

Proton accelerators produce ν more efficiently than ν (σν > σν).

The ν mode needs more beam time [Tν : Tν = 2 : 1].

Undercut statistics ⇒ Difficult to reduce the uncertainty.

Degeneracy:

Only sin δD appears in Pνµ→νe & Pνµ→νe .

Cannot distinguish δD from π − δD.

CP Uncertainty ∂Pµe

∂δD
∝ cos δD ⇒ ∆(δD) ∝ 1/ cos δD.

Solution:

Measure ν mode with µ+ decay @ rest (µDAR)
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µDAR ν̄ Oscillation Experiments

A cyclotron produces 800 MeV proton beam @ fixed target.
Produce π± which stops &

π− is absorbed,
π+ decays @ rest: π+ → µ+ + νµ.

µ+ stops & decays @ rest: µ+ → e+ + νµ + νe.

 0  10  20  30  40  50  60

E
ν
 [MeV]

µDAR Spectrum

e
+

—
ν

µ

νe

νµ travel in all directions, oscillating as they go.
A detector measures the νe from νµ → νe oscillation.
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Accelerator + µDAR Experiments

Combining νµ→ νe @ accelerator [narrow peak @ 550 MeV] &
νµ→ νe @ µDAR [wide peak ∼ 45 MeV] solves the 2 problems:

Efficiency:
ν @ high intensity, µDAR is plentiful enough.
Accelerator Exps can devote all run time to the ν mode. With same
run time, the statistical uncertainty drops by

√
3.

Degeneracy: (decomposition in propagation basis [1309.3176])

-0.02

-0.015

-0.01

-0.005

 0

 0.005

 0.01

 0.015

 300  400  500  600  700  800  900  1000

— P
(i
)

µ
e

Eν, 
—
ν [MeV]

decomposition coefficients for cosδ and sinδ at T2(H)K [295 km]

ν Mode: coeff of cosδ

sinδ
—
ν Mode: coeff of cosδ

sinδ
-0.04

-0.03

-0.02

-0.01

 0

 0.01

 0.02

 0.03

 0.04

 0.05

 0.06

 0.07

 10  15  20  25  30  35  40  45  50

P
(i
)

µ
e
 o

r 
— P

(i
)

µ
e

Eν, 
—
ν [MeV]

decomposition coefficients for cosδ and sinδ at µDARTS

near detector [10 km]: coeff of cosδ

sinδ

far detector [30 km]: coeff of cosδ

sinδ

Shao-Feng Ge (MPIK); 2017-5-22 @ LPSC Grenoble, France The Leptonic CP Phases



New Proposals

1 µDAR source + 2 detectors

Advantages:

Full (100%) duty factor!

Lower intensity: ∼ 9mA [∼ 4× lower than DAEδALUS]

Not far beyond the current state-of-art technology of cyclotron
[2.2mA @ Paul Scherrer Institute]

MUCH cheaper & technically easier.
Only one cyclotron.

Lower intensity.

Disadvantage?

A second detector!
µDAR with Two Scintillators (µDARTS) [1401.3977]

Tokai ’N Toyama to(2) Kamioka (TNT2K) [1506.05023]
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TNT2K

T2(H)K + µSK + µHK

µDAR is also useful for material, medicine industries in Toyama
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Event Shape @ TNT2K Evslin, Ge & Hagiwara [1506.05023]
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δD Precision @ TNT2K Evslin, Ge & Hagiwara [1506.05023]
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δD Precision @ TNT2K Evslin, Ge & Hagiwara [1506.05023]
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Majorana CP Phase Measurement
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Preference of NH ⇒ Non-Observation of 0ν2β?
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Any chance of obtaining some information?

Re

Im

O

I1

I 2

∆M3
∆M1-Π

L3

L 2

L1

Majorana Triangle

〈m〉ee ≡
−→
L1 +

−→
L2 +

−→
L3 ,

with
−→
L1 ≡ m1U

2
e1 = m1c

2
r c

2
s e

iδM1 ,
−→
L2 ≡ m2U

2
e2 =

√
m2

1 + ∆m2
s c

2
r s

2
s ,

−→
L3 ≡ m3U

2
e3 =

√
m2

1 + ∆m2
as

2
r e

iδM3 .
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Determine 2 Majorana Phases Simultaneously

|L1 − L3| ≤ L2 ≤ L1 + L3 .

cos δM1 = −L21 + L22 − L23
2L1L2

= −m2
1c

4
r c

4
s + m2

2c
4
r s

4
s −m2

3s
4
r

2m1m2c4r c
2
s s

2
s

,

cos δM3 = +
L21 − L22 − L23

2L2L3
= +

m2
1c

4
r c

4
s −m2

2c
4
r s

4
s −m2

3s
4
r

2m2m3c2r s
2
r s
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Uncertainties from Oscillation Parameters
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Uncertainties from Oscillation Parameters
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Uncertainties from Oscillation Parameters
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Prey of Leptonic CP Phases



Thank You!
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