

Mesure de la section efficace de production ttbar dans le canal "tau+lepton+jets+met"

> Florent Lacroix LPC Clermont-Fd

DOFrance Grenoble

Outline

Etat des lieux

Présentation de l'analyse

- Préselection, normalisation du fond W+jets
- Sélection, jets faking tau correction
- Extraction de la section efficace

> Conclusion

Etat des lieux

Run IIa : La mesure de la section efficace de production a été réalisée dans les données du Run IIa (~1 fb⁻¹) par Haryo and Todd.

- "Preliminary result" approuvés l'été dernier (assuming SM Branching Ratios):
 - Muon+tau channel: $\sigma_{t\bar{t}} = 8.0^{+2.8}_{-2.4}(stat)^{+1.8}_{-1.7}(syst) \pm 0.5(lumi)pb$
 - Electron+tau channel: $\sigma_{t\bar{t}} = 8.6^{+3.1}_{-2.6}(stat)^{+1.6}_{-1.6}(syst) \pm 0.5(lumi)pb$
 - Combination: $\sigma_{t\bar{t}} = 8.3^{+2.0}_{-1.8}(stat)^{+1.4}_{-1.2}(syst) \pm 0.5(lumi)pb$
- Final result en EB (summer et publi): $\sigma_{t\bar{t}} = 8.2^{+2.2}_{-2.0}(stat)^{+1.7}_{-1.5}(syst + lumi)pb$

Run IIb :

La mesure de la section efficace de production a été réalisée dans les données "preshutdown" (1,2 fb⁻¹) et approuvée ("preliminary result") pour HCP2008. Mais...

 Un bug dans caf_trigger, affectant le canal muon+tau, a été découvert récemment (runvstriglistX100.txt; 30% des données étaient manquantes).
 Les résultats doivent être approuvés à un niveau "publication result" pour être utilisés dans les analyses recherchant le boson de Higgs chargé.

L'analyse des données de Run IIb doit être refaite.

Signal and background

- 1 isolated lepton : muon or electron
- 1 hadronic tau
- opposite charge between the tau and the lepton
- 2 jets, at least 1 b-tagged
- MET >15 GeV

Mainly events where a jet fakes the tau or the lepton:

- W+jets, use shapes from Monte Carlo and normalize to data
- Z+jets, diboson and single top, estimated from Monte Carlo
- Multijets background (QCD), estimated from data

 $N_{QCD}^{OC} = N_{QCD}^{SC} = N_{DATA}^{SC} - N_{W+jets}^{SC} - N_{Z+jets}^{SC} - N_{diboson}^{SC} - N_{single top}^{SC} - N_{t\bar{t}}^{SC}$

Preselection cuts

Common selection :

- triggers (superOR)
- at least 1 isolated lepton
- beam reweighting, lumi RW • 2 jets of 20 GeV, 30 GeV/c for the leading jet
- vertex requirements zPV < 60cm, $NtrackPV \ge 3$, dz(lepton, PV) < 1 cm
- On MC, JSSR is applied with shifting, but not propagated to the MET

Mu + tau :

- One 20 GeV tight muon:
 - Quality: MediumNSeg3
 - TrkQuality: Medium
 - IsoQuality: TopP14Tight
- veto electron
- Δφ(μ,MET) > 2.1 0.035*MET
- MET > 15 GeV

■ E + tau :

- One 15 GeV tight electron
 - Quality: top_tight
 - version: 3
- veto muon

data_quality

- △(e,MET) > 2.2 0.045*MET
- MET > 20 GeV

MC normalization: Z+jets background

Z+jets normalization factor: (terminology from JF Grivaz V+jets meeting)

 k'-factor (LL to NNLO): 	1.3	for Z+lp, Z+bb and Z+cc
• HF-factor:	1.5	for Z+bb
	1.7	for Z+cc
• S-factor:	1.0	for Z+lp

- S_HF-factor (from Shannon): 1.16±0.35 for Zbb and Zcc (for Medium btag)
- <u>p20 Alpgen Jet Dependent Zpt ReWeighting</u>: (cf D0note 5569)

```
Reweight pT using weight=(par0/2.)*(1.+Erf((pt-par1)/(par2*sqrt(2.))))+par3
Reweighting parameters exclusive 0 jet bin :
par0 : 0+-0
par1 : 1+-0
par2 : 1+-0
par2 : 1.0277+-0.006
Reweighting parameters
                        exclusive 1 jet bin :
par0 : 0.5458+-0.314
par1 : 16.79+-0.68
                                                   (parameters for \geq 20 \text{ GeV} jets)
par2 : 5.677+-0.814
par2 : 0.415+-0.025
Reweighting parameters
                        inclusive 2 jet bin :
par0 : 0.264+-0.0613
par1 : 26.99+-4.75
par2 : 4.311+-7.529
par2 : 0.66194+-0.4158
```

Determination of the W normalization (1/3)

• HF-factors: etau: 2.0±0.4 mutau: 2.3±0.5

• To obtain the W normalization factor, we performed a fit of the distributions of the W+jets and the multijets background to the data at the preselection level.

• W+jets template: given by the MC simulation.

• **Multijet template:** derived by using data events with non-isolated leptons: muon loosely isolated but which fails the tight isolation, or electron which pass the loose criteria, but not the tight one. The contribution of W events passing these conditions are subtracted to the multijet template.

• data: obtained after the preselection cuts. The contributions from Z and ttbar are subtracted from the data.

 An iterative fit is now performed: the results of the W normalization is propagated to the MC until a stable factor is obtained.

- This fit has been performed in both 1 jet and 2 jets inclusive samples.
- The following distributions have been used:
- transverse mass of the lepton + missing transverse energy ("à la p17").
- MET distribution ("à la CDF").

Determination of the W normalization (2/3)

Ist iteration (factor=1.0 for the W sample subtracted to the data):

_			Etau	Mutau
Γ	\geq 1 jet	m _T (lepton,MET)	1.42±0.01	1.30±0.02
		MET	1.43±0.02	1.33±0.02
	≥ 2 jets	m _T (lepton,MET)	1.70±0.03	1.67±0.11
		MET	1.65±0.04	1.67±1.05
2r	nd iteration (fact	or=(1.4, 1.7) or (1.3	, 1.7)):	àrefaire
			Etau	Mutau
	≥ 1 jet	m _T (lepton,MET)	Etau 1.43±0.01	Mutau 1.31±0.01
	≥1 jet	m _T (lepton,MET) MET	Etau 1.43±0.01 1.44±0.02	Mutau 1.31±0.01 1.33±0.02
	≥ 1 jet ≥ 2 jets	m _T (lepton,MET) MET m _T (lepton,MET)	Etau 1.43±0.01 1.44±0.02 1.72±0.03	Mutau 1.31±0.01 1.33±0.02 1.67±0.26

Etau: 1.4 (1 jet) and 1.7 (2 jets) Mutau: 1.3 (1 jet) and 1.7 (2 jets) Uncertainties: only the ones given by the fit

Determination of the W normalization (3/3)

Etau: Some preselection plots

Selection

- E+tau and Mu+tau: ≥ 1 tau with:
- Et 10/5/10 GeV
- trk 7/5/5/7 GeV
- |η|<1.0
- p20NN > 0.8
- Δ**R(τ,ℓ)<0.5**
- Δ**z(**τ,μ)<1.0 cm
- opposite sign wrt the lepton
- tau energy correction is performed
- MET cut:
- ■Mu+tau: met > 15 GeV

E+tau: met > 20 GeV

The tau energy scale is propagated to the met.

• <u>2 jets</u>: If a jet matched the tau with the highest NN output ($\Delta R < 0.5$), it is discarded from the list of jets. The leading jet cut (pt>30GeV) is applied on the revised jet list.

BTAG (using permuter): at least 1 btagged jet

- medium operating point: NN>0.65
- p20 TaggabilityRFs (follow dOwiki/physics/VPlusJets/MC/p20taggability)

- NNeCut 0.85
- modPhiPSMin 0.1
- modPhiPSMax 0.9

Jets faking taus correction (1/3)

• The data/MC correction factor for the jets faking taus rate is determined with the comparison of the fraction of events with and without reconstructed tau in the MC and in the data.

- muon+jet samples obtained after the preselection (with the 1 jet inclusive sample).
- Reconstructed tau: NN>0.8
- In the data, the estimated multijet, Z and ttbar contributions have been subtracted.

(Number of ttbar events subtracted in the sample with a tau: 41.5; total data ~700)

Jets faking taus correction (2/3)

Jets faking taus correction (3/3)

- The same thing in the etau channel :
 - The multijet background is no more negligible.
 - The multijet normalization factor obtained at the preselection seems no more valid after a tau requirement.

The factor obtained in the muon+tau channel has been used.

Etau : Pre-tagged plots

Etau : post btag plots

Choice of the final selection cuts

• 1 hadronic tau, $|\eta|$ <1.0, Et>10GeV (5GeV for type 2), opposite charge wrt the lepton

4 NNcut values tested for each tau type: 0.7/0.8/0.9/0.95

• At least 1 btag:

6 working points tested: Loose, medium, tight, very tight, ultra tight, mega tight.

Choice of the final selection cuts

24/

18

Cross section extraction

$$\sigma_{t\bar{t}} = \frac{N_{DATA}^{OC} - N_{DATA}^{SC} - (N_W^{OC} - N_W^{SC}) - (N_Z^{OC} - N_Z^{SC}) - (N_{diboson}^{OC} - N_{diboson}^{SC}) - (N_{single-top}^{OC} - N_{single-top}^{SC})}{(\varepsilon_{t\bar{t}}^{OC} - \varepsilon_{t\bar{t}}^{SC}) \times \mathcal{L}}$$

To estimate the cross section, the following likelihood function is defined:

$$L(\sigma, \{N^{obs}, N^{bkg}, \epsilon, \mathcal{B}, \mathcal{L}\}) = \mathcal{P}(N^{obs}, \mu_j) = \frac{\mu_j^{N^{obs}}}{N^{obs}!} e^{-\mu_j}$$

where P(Nobs, μ_j) is the Poisson probability of observing Nobs events given an expected combined signal and background yield of : $\mu_j = \sigma \ \epsilon \mathcal{BL} + N^{bkg}$

$$N^{obs} = N_{DATA}^{OC}$$

$$N^{bkg} = N_{DATA}^{SC} + (N_W^{OC} - N_W^{SC}) + (N_Z^{OC} - N_Z^{SC}) + (N_{Diboson}^{OC} - N_{Diboson}^{SC}) + (N_{single-top}^{OC} - N_{single-top}^{SC})$$

 The cross section is extracted by minimizing the negative log-likelihood function:

$$-logL(\sigma, \{N^{obs}, N^{bkg}, \epsilon, \mathcal{B}, \mathcal{L}\})$$

E+tau channel: $\sigma_{t\bar{t}} = 5.05^{+2.95}_{-2.51}(stat)^{+2.25}_{-2.23}(syst) \pm 0.31(lumi)pb$

Conclusion

La mesure de la section efficace de production ttbar a été réalisée dans les données du Run IIb et approuvée "preliminary result" pour HCP2008. Mais...

 Un bug dans caf_trigger, affectant le canal muon+tau, a été découvert récemment (runvstriglistX100.txt; le nombre de donnée change de 30%).
 Les résultats doivent être approuvés à un niveau "publication result" pour être utilisés dans les analyses recherchant le boson de Higgs chargé.

 \Rightarrow Updated packages (new jetid eff, new muon trigger SPC files (muon eta up to 2.0), muon isolation in "pt drJet15", etc...)

 \Rightarrow Some work on tau systematic uncertainties is also required for publication level (eg: uncertainty from tau energy scale: varying the tau p_T before selection).

Stay tuned, new results to come !

BACK UP SLIDES

tau decays

Mass = $1.78 \text{ GeV}/c^2$, $c\tau = 87.1 \text{ mm}$

Final State	BR (%)	Decay type		
$e^{\pm}v_{e}v_{\tau}$	17.8	Leptonic		Recor
$\mu^{\pm}\nu_{\mu}\nu_{\tau}$	17.4	35.2%		electr
$\pi^{\pm}/K^{\pm} u_{ au}$	11.8	1-prong		
$π^{\pm}/K^{\pm}ν_{\tau}$ + n $π^{0}$, n \geq 1	36.9	48.7%	Hadronic	
$π^{\pm}π^{\mp}π^{\pm}ν_{\tau}$ + n $π^{0}$, n \geq 0	13.9	3-prong 16.1%	65%	

Reconstructed with standard electron/muon ID

Hadronic tau: → dedicated tau ID

Tau identification at DO: 3 tau types

 TRK: up to 3 tracks in a 0.3 cone around the CAL cluster with at least 1 with p_T>1.5 GeV/c. Invariant mass<1.8 GeV/c².

For each type : 1 anti-jet NN 10⁻¹ has been trained using mainly isolation variables, shower shape variables and 10⁻² Cal-track correlations variables.

tau NN: input variables

- Caliso = $(E_T^{R=0.5} E_T^{R=0.3}) / E_T^{R=0.3}$
- Trkiso = $\Sigma p_T^{\text{trks in R=0.5}} / \Sigma p_T^{\text{tau trks}}$
- Profile = $(E_T^{Tower 1} + E_T^{Tower 2}) / E_T$
- EM Isolation Fraction = (E^{EM1} + E^{EM2}) / E
- Tau RMS
- EM fraction
- Hadronic fraction
- EM profile = $E_{T}^{EM \text{ subclusters}} / E_{T}^{EM3}$
- Angle between sum of tau tracks and sum of EM-subcluster(s)
- Calorimeter-Track Correlation = $E_T / (E_T + \Sigma p_T^{tau trks})$

Run IIa results

Cross section (assuming SM Branching Ratios):

$$\begin{array}{ll} \cdot \text{ Muon+tau channel:} & \sigma_{t\bar{t}} = 8.0^{+2.8}_{-2.4}(stat)^{+1.8}_{-1.7}(syst) \pm 0.5(lumi)pb \\ \cdot \text{ Electron+tau channel:} & \sigma_{t\bar{t}} = 8.6^{+3.1}_{-2.6}(stat)^{+1.6}_{-1.6}(syst) \pm 0.5(lumi)pb \\ \cdot \text{ Combination:} & \sigma_{t\bar{t}} = 8.3^{+2.0}_{-1.8}(stat)^{+1.4}_{-1.2}(syst) \pm 0.5(lumi)pb \end{array}$$

Cross section x branching ratio:

$$\begin{split} \sigma_{t\bar{t}} \times BR(t\bar{t} \to \mu + \tau + 2\nu + 2b) &= 0.18^{+0.13}_{-0.11}(stat)^{+0.09}_{-0.09}(syst) \pm 0.01(lumi) pb \\ \sigma_{t\bar{t}} \times BR(t\bar{t} \to e + \tau + 2\nu + 2b) &= 0.19^{+0.12}_{-0.10}(stat)^{+0.07}_{-0.07}(syst) \pm 0.01(lumi) pb \\ \sigma_{t\bar{t}} \times BR(t\bar{t} \to \ell + \tau + 2\nu + 2b) &= 0.19^{+0.08}_{-0.08}(stat)^{+0.07}_{-0.07}(syst) \pm 0.01(lumi) pb \\ \text{For a top mass of 175 GeV/c}^2, \text{ the standard model expectation is 0.12 pb} \\ 24/06/2008 \end{split}$$

Comparison with other DO measurements

²⁶

Run IIa: Systematic uncertainties

	μau	$e\tau$	combined
	$\Delta \sigma$	$\Delta \sigma$	$\Delta \sigma$
Jet energy calibration	+0.30 - 0.50	+0.33 - 0.36	+0.43 - 0.35
PV identification	+0.36 - 0.34	+0.23 - 0.37	+0.38 - 0.21
Muon identification	+0.21 - 0.20	_	+0.12 - 0.12
Electron identification		+0.59 - 0.53	+0.25 - 0.24
Tau identification	+0.16 - 0.15	+0.15 - 0.15	+0.16 - 0.16
Trigger	+0.00 - 0.00	+0.12 - 0.07	+0.14 - 0.13
Fakes	+0.45 - 0.42	+0.59 - 0.53	+0.50 - 0.49
b-tagging	+0.31 - 0.34	+0.44 - 0.41	+0.45 - 0.37
MC normalization	+0.18 - 0.18	+0.15 - 0.15	+0.13 - 0.13
Background/MC statistics	+1.46 - 1.46	+1.19 - 1.19	+1.00 - 0.91
Other	+0.08 - 0.08	+0.09 - 0.10	+0.19 - 0.18
Subtotal	+1.76 - 1.67	+1.64 - 1.59	+1.40 - 1.24
Luminosity	± 0.49	± 0.52	± 0.51
Total	+1.83 - 1.95	+1.72 - 1.67	+1.49 - 1.34

Run IIb: Systematic uncertainties

	μau	e au
	$\Delta \sigma ~(\mathrm{pb})$	$\Delta \sigma \text{ (pb)}$
Jet energy calibration	+0.16 - 0.23	+0.20 - 0.17
PV identification	+0.08 - 0.07	+0.06 - 0.06
Muon identification	+0.20 - 0.20	_
Electron identification	-	+0.38 - 0.34
Tau identification	+0.28 - 0.26	+0.17 - 0.16
Trigger	+0.35 - 0.32	+0.16 - 0.06
Jet-tau fake rate	+0.29 - 0.28	+0.27 - 0.25
Opposite charge	+0.18 - 0.18	+0.13 - 0.1
b-tagging	+0.48 - 0.42	+0.37 - 0.33
MC normalization	+0.31 - 0.31	+0.30 - 0.30
Background/MC statistics	+1.14 - 1.14	+2.12 - 2.12
Luminosity profile	+0.18 - 0.18	+0.13 - 0.13
Total	+1.43 - 1.41	+2.25 - 2.23

Systematic uncertainties

• Data quality: a 0.5% uncertainty is used for all MC samples, from p17 analysis.

• Primary vertex selection: the uncertainty in primary vertex selection between data and MC is 2%.

• Vertex z simulation: The "Cut40cm" parametrization (instead of the "Cut60cm") is used for the systematics estimation.

• Data MC luminosity profile: This uncertainty arises from differences in the luminosity profile of the zerobias overlay events used in MC from the data sample. A 2% uncertainty is taken for all MC samples.

• trigger: the systematic uncertainty is estimated by shifting turn-on curves up and down.

• K-factor: we assign an uncertainty of 0.1 on the K factor for both W and Z like in the p17 analysis.

• HF factor: we use the errors described previously scaled to the appropriate fraction of events which contain heavy flavor.

Systematic uncertainties (cont'd)

• Muon ID: (µ analysis) the systematic errors on muon ID are taken from the p17 muon certification note (0.7%).

- Muon track: (µ analysis) the systematic errors on muon track reconstruction are taken from the p17 muon certification note (0.7%).
- Muon isolation: (µ analysis) we use an estimate from the single top group (p17 results), but as a flat 2% rather than as a function of jet multiplicity.

• Electron ID: (e analysis) we use the uncertainty evaluted by the single top group (p17) using di-electron events (5.5%). This uncertainty is dominated by the uncertainty in number of jets and is probably an overestimate. We plan to change em_corr (eta, phi) with (eta, pt) to obtain the systematics estimation.

• Tau reconstruction: the uncertainty in the data/MC agreement with respect to tau reconstruction is 3%.

• Jet-tau fake rate: A 8% uncertainty is applied to the W, Z ! $\mu\mu(ee)$, diboson and ttbar \rightarrow l + jets.

• Opposite charge: A 2% uncertainty is applied like in p17 $e\mu$ analysis.

Systematic uncertainties (cont'd)

• Tag rate function: this uncertainty is evaluated by shifting the value of the tagging probability for each jet by $(\pm 1\sigma)$ from the central value of the tag rate function.

• JES: this uncertainty is evaluated by shifting the jet energy scale in the JSSR processor by $(\pm 1\sigma)$. A 2% uncertainty is also added in quadrature to take into account the fact that the MC has been generated with the wrong Zero-Bias overlay set.

• Jet energy resolution: this uncertainty is evaluated by shifting the jet energy correction by $(\pm 1\sigma)$.

• Jet ID: this uncertainty is evaluated by shifting down the jet ID.

• Background Statistics: an uncorrelated combination of the statistical error on the Monte Carlo and same-sign data contributions to the background.

Mutau: Trigger probability: RunIIa vs RunIIb

• I am using NPTight isolation for the muons in the trigger config because SPC for TopP14Tight (isolation used offline) is not yet available. The bias should be fairly small (Liang Li).

• The list of 15 GeV tight muon are used to compute the trigger probability.

24/06/2008

Only before v15.50 -

RunIIa: MuJets MU_JT20_L2M0 MU_JT25_L2M0 MUJ2_JT30_LM3 MUJ1_JT35_LM3

RunIIb: MuJets_TriggersOR (Super OR between Mujets and single muon triggers)

> MUHI1 ILM15 MUHI1 ITLM10 MUHI1 TK12 TLM12 MUHI2_ILM15 MUHI2 ITLM10 MUHI2_TK12_TLM12 MUHI3 ILM15 MUHI3 ITLM10 MUHI3 TK12 TLM12 MUJ1 2J20LM3DR3 MUJ1_JT35_LM3 MUJ3_2J20LM3DR3, MUJ3_JT35_LM3

Mutau: Events with trigger_probability=0

All bins for |eta|>1.8 are set to 0 in the SPC files.

Etau: Trigger probability: RunIIa vs RunIIb

$90.7\% \rightarrow \textbf{97.7\%}$

MC normalization factor

JF Grivaz V+jets meeting 12 feb 08

Most of the misunderstandings are due to ambiguities in the terminology. I therefore propose the following:

- K-factor is purely theoretical, and denotes a (N)NLO/LO ratio of cross sections;
- K'-factor is also theoretical, and denotes a (N)NLO/LL ratio of cross sections. According to Steve, ALPGEN cross sections are Leading Log;
- S-factor is empirical, and comes on top of K or K' to bring MC in agreement with data. MC should be initially normalized to luminosity, and all correction (a.k.a. scale) factors should be applied (trigger, ID...);
- HF-factor is, in principle, theoretical, but in practice only theory inspired. It tells you by how much heavy flavor production should be increased, on top of K or K', and possibly S;
- S_HF-factor is empirical, and comes on top of K or K', S, and HF, to bring MC in agreement with data, after b-tagging.

In the following, Z+(lp/HF) will be discussed. The same can be done for W+(lp/HF)

The MET cut < 200 GeV has been removed. It was used to discard events with a straight muon track which give an arbitrarily large MET via the JES_MU correction. Since caf_util p21-br-50, the muon pt used in JES_MU has been capped at 60 GeV. So MET<200 GeV should now be obsolete.

Multijet templates

Without W subtraction With W subtraction factor=1.0 With W subtraction factor=xx

37