Higgs Alignment from Extended Supersymmetry

Sophie Williamson

LPTHE, Sorbonne Université, CNRS

Based on work in collaboration with Karim Benakli and Mark Goodsell (arXiv:1801.08849)

LSPC Grenoble, 14th March 2018

A la carte

- Introduction
 - Higgs alignment
 - Dirac Gaugino models
 - $\mathcal{N}=2$ supersymmetry
- Alignment in the MDGSSM
 - Low energy Two-Higgs Doublet Model limit
 - Causes of misalignment
 - Precision Study and results
 - Experimental Constraints
- Simplified MRSSM analysis

Motivation

- Absence of strongly-coupled particles at the LHC → interest in new electroweak-coupling particles.
- Is the Higgs boson part of a larger scalar sector?
- Strong LHC constraints imply the heavy Higgs should be aligned with or decoupled from the SM-like one.
- Interested in theories where alignment is untuned.
- Could finding a second Higgs doublet unveil a full SUSY theory?
- If SUSY is discovered, is R-symmetry conserved?

Higgs Alignment

- In minimal SUSY: Two complex SU(2) Higgs doublets $\mathbf{H_u}$, $\mathbf{H_d} \xrightarrow{\mathsf{EWSB}} 5$ physical Higgs bosons: h, H, A, H^\pm .
- However: strong contraints on Higgs couplings from experiment.

• Higgs Alignment: Mass eigenstates align with the VEV \rightarrow SM-like Higgs.

Alignment without decoupling

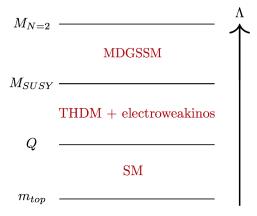
- Keep m_H light (possible LHC detection).
- Choosing masses/quartic couplings from the bottom-up

 → alignment is not generic.
- Interested in deriving the THDM couplings from the top-down
 → Find cases where Higgs alignment arises naturally.
- ullet Higgs alignment can be realised from $\mathcal{N}=2$ supersymmetry.

Minimal Dirac Gaugino Supersymmetric Standard Model (MDGSSM)

Effective Field Theory Approach

Our Model:

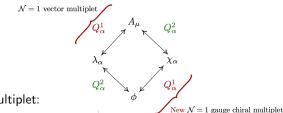


Minimal Dirac Gaugino Supersymmetric Standard Model

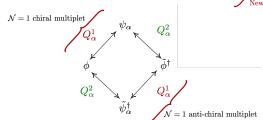
- Add $\mathcal{N}=1$ chiral multiplets **S** (singlet), **T** (SU(2) triplet), **O** (SU(3) octet) in the adjoint representation of the corresponding gauge groups.
- Majorana gauginos (one Weyl fermion) → Dirac Gauginos (Weyl fermion + adjoint chiral fermion)
 - $\mathcal{L} \supset -\frac{1}{2}M_i\lambda_i\lambda_i + h.c.$ \longrightarrow $\mathcal{L} \supset -m_{iD}\chi_i\lambda_i + h.c.$
 - Dirac masses preserve R-symmetry.
- New states destroy of gauge coupling unification.
 - Can add vector-like lepton fields to restore the property.

$\mathcal{N}=2$ Supersymmetry

- Two supersymmetry generators: $Q_{\alpha}^{1}, Q_{\alpha}^{2}$.
- $\mathcal{N}=2$ multiplets:
 - $\mathcal{N} = 2$ vector multiplet:



• $\mathcal{N}=2$ hypermultiplet:



$\mathcal{N}=2$ Supersymmetry in a Dirac Gaugino model

- A fully $\mathcal{N}=2$ supersymmetric lagrangian only permits gauge interactions.
- \bullet But isn't the matter sector fundamentally chiral and therefore ${\cal N}=1?$
 - ightarrow Assume $\mathcal{N}=2$ supersymmetry in the Higgs/gauge sector only.
- ullet 2 Higgs doublets of MSSM naturally sit in an $\mathcal{N}=2$ hypermultiplet.
- New chiral superfields $\rightarrow \mathcal{N}=2$ extended gauge sector.

Modifications to the Higgs sector

- Choose $\mathcal{N}=2$ conserving superpotential.
- Modification to the MSSM Higgs sector:

$$W_{\mathsf{Higgs}} = \mu \, \mathsf{H_u} \cdot \mathsf{H_d} + \lambda_{\mathcal{S}} \mathsf{S} \, \mathsf{H_u} \cdot \mathsf{H_d} + 2\lambda_{\mathcal{T}} \, \mathsf{H_d} \cdot \mathsf{TH_u}$$

• At tree level:

 $\mathcal{N}=2$ supersymmetry imposes:

$$\lambda_{\mathcal{S}} = \frac{\mathcal{g}'}{\sqrt{2}}, \qquad \lambda_{\mathcal{T}} = \frac{\mathcal{g}}{\sqrt{2}},$$

The Two-Higgs Doublet Model Limit: I

- ullet Map the MDGSSM onto the two-Higgs doublet model (THDM) ullet Integrate out the adjoint scalars.
- THDM parametrization:

$$\begin{split} V_{EW} & = & m_{11}^2 \Phi_1^{\dagger} \Phi_1 + m_{22}^2 \Phi_2^{\dagger} \Phi_2 - [m_{12}^2 \Phi_1^{\dagger} \Phi_2 + \text{h.c}] + \frac{1}{2} \lambda_1 (\Phi_1^{\dagger} \Phi_1)^2 + \frac{1}{2} \lambda_2 (\Phi_2^{\dagger} \Phi_2)^2 \\ & + \lambda_3 (\Phi_1^{\dagger} \Phi_1) (\Phi_2^{\dagger} \Phi_2) + \lambda_4 (\Phi_1^{\dagger} \Phi_2) (\Phi_2^{\dagger} \Phi_1) \\ & + \left[\frac{1}{2} \lambda_5 (\Phi_1^{\dagger} \Phi_2)^2 + [\lambda_6 (\Phi_1^{\dagger} \Phi_1) + \lambda_7 (\Phi_2^{\dagger} \Phi_2)] \Phi_1^{\dagger} \Phi_2 + \text{h.c} \right], \end{split}$$

- To map the MDGSSM onto this, we make the identifications $\Phi_2 = H_u$, $\Phi_1^i = -\epsilon_{ii}(H_a^j)^*$
- In the limit of $|m_{DY}| \ll m_S, |m_{D2}| \ll m_T$

$$\lambda_1, \lambda_2 o rac{1}{4}(g_2^2 + g_Y^2), \qquad \lambda_3 o rac{1}{4}(g_2^2 - g_Y^2) + 2\lambda_T^2, \qquad \lambda_4 o -rac{1}{2}g_Y^2 + \lambda_S^2 - \lambda_T^2,$$

The Two-Higgs Doublet Model Limit: II

- Low energy theory: type-II two-Higgs doublet model with an additional Dirac Bino and Wino.
 - Mass of electroweakinos $\ll m_S, m_T$.
 - The gluino remains heavy: LHC constraints $\rightarrow \mathcal{O}(2 \text{ TeV})$.
- Running: Fix the boundary conditions at high energies, and run down.

Tree Level Alignment: I

Alignment basis:

Mass matrices for the CP-even scalars:

$$\mathcal{M}_h^2 = egin{pmatrix} Z_1 v^2 & Z_6 v^2 \ Z_6 v^2 & m_A^2 + Z_5 v^2 \end{pmatrix} \qquad ext{with } Z_i = Z_i(\lambda_i).$$

- Alignment when $Z_6 \rightarrow 0$.
- With $\mathcal{N}=2$ supersymmetry, at tree level:

$$Z_6 = -rac{1}{2}\sin(2eta)\cos(2eta)\left[rac{(g_2^2 + g_Y^2)}{2} - (\lambda_S^2 + \lambda_T^2)
ight]$$

 \Rightarrow when the couplings take their $\mathcal{N}=2$ values $\lambda_S^2+\lambda_T^2=\frac{g_2^2+g_Y^2}{2}$, the Higgs doublets are automatically aligned!

Tree Level Alignment: II

The Higgs mass at tree level:

- Lightest Higgs mass given by the (1,1) component of \mathcal{M}_h^2 $\rightarrow m_h^2 = Z_1 v^2$
- In terms of λ_i :

$$Z_1 v^2 = m_Z^2 + v^2 \left[(2\lambda_S^2 - g_Y^2) + (2\lambda_T^2 - g_2^2) \right] \sin(\beta)^2 \cos(\beta)^2$$

- \Rightarrow In alignment limit, see that $m_h^2 o m_z^2$.
- \Rightarrow When couplings deviate from $\mathcal{N}=2$ relations, get a tree-level boost to m_h .

Tree Level Alignment: Summary

- Heavy CP-even neutral scalar does not take part in EWSB.
- The model shows alignment for any value of tan β :
 - $m_h^{N=2} = m_Z$, $m_H^{N=2} = m_A$
 - $m_{H^{\pm}}^{2,N=2} = m_A^2 + 2m_W^2 m_Z^2$.
 - \Rightarrow First demonstrated by Antoniadis, Benakli, Delgado and Quirós in the context of gauge mediation arXiv:hep-ph/0610265.
 - \Rightarrow Phenomenological study done by Ellis, Quevillon, Sanz taking $M_{\mathcal{N}=2}=Q$ arXiv:1607.05541.

Misalignment: $\mathcal{N}=2$ to $\mathcal{N}=1$ SUSY

Radiative Corrections: Chiral Matter

- Chiral fields present at the $\mathcal{N}=2$ scale.
- Splitting of λ_S , λ_T from their $\mathcal{N}=2$ scale values during running:

$$Z_6(M_{SUSY}) = \frac{1}{4} s_{2\beta} c_{2\beta} \left[\left(2\lambda_S^2 - g_Y^2 \right) + \left(2\lambda_T^2 - g_2^2 \right) \right] + \text{threshold corrections}.$$

• Can find an approximate magnitude of the splitting by integrating over the difference in β_{λ_S} and β_{λ_T} :

$$\begin{split} \left[2\lambda_S^2 - g'^2\right]_{M_{SUSY}} & = & -\frac{2g'^2}{16\pi^2} \left[3|y_t|^2 + 3|y_b|^2 + |y_\tau|^2 - 10g'^2\right] \log\left(\frac{M_{\mathcal{N}=2}}{M_{SUSY}}\right)\,, \\ \left[2\lambda_T^2 - g^2\right]_{M_{SUSY}} & = & -\frac{2g^2}{16\pi^2} \left[3|y_t|^2 + 3|y_b|^2 + |y_\tau|^2 - 6g^2\right] \log\left(\frac{M_{\mathcal{N}=2}}{M_{SUSY}}\right)\,. \end{split}$$

 \Rightarrow Estimate e.g. $|Z_6(M_{SUSY})| \lesssim \mathcal{O}(0.1)$.

Misalignment: $\mathcal{N}=1$ to $\mathcal{N}=0$

Radiative Corrections: Mass splitting

 Mass splitting between the fermionic/bosonic components of the superpartners:

$$Z_6(v) \simeq Z_6(M_{SUSY}) + s_{eta}^3 c_{eta} imes rac{3y_t^4}{8\pi^2} \log rac{m_{ ilde{t}}^2}{m_t^2}$$

- Less misalignment than in the MSSM:
 - No tree-level contribution to Z₆.
 - Stop correction to m_h smaller in the MDGSSM.
 - $\rightarrow \mathcal{O}(\frac{1}{2})$ for tan $\beta = 2$ because of:
 - Tree-level boost to m_h (so smaller stop contributions required)
 - Only small stop mixing is possible

Precision Study: Implementation

$Q \rightarrow M_{SUSY}$

- 11 matching Yukawas to SM values + 21 strong corrections to y_t .
- 11 gauge threshold corrections.
- 2l corrections to m_h .
- Running: 21 Low energy THDM + Dirac electroweakinos in SARAH.

$M_{SUSY} \rightarrow M_{\mathcal{N}=2}$

- ullet Tree-level corrections from DG-masses and 1l corrections to λ_i .
- Conversion of $\overline{MS} \to \overline{DS}$ gauge + Yukawa couplings.
- Running: 21 MDGSSM in SARAH.

Assumptions

- Q = 400 GeV.
- M_{SUSY} : Stop masses; other MSSM particles \rightarrow vary to obtain $m_h = 125.15$ GeV at 2I.

Other Inputs: Numerical values

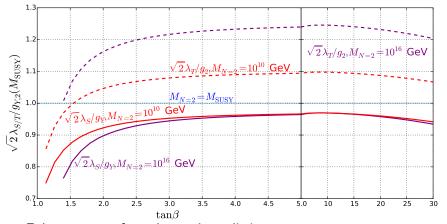
The precision study implemented scans over $\tan \beta$, M_{SUSY} and $M_{\mathcal{N}=2}$ and defined

- $M_{scalars}$ (heavier S, T scalars) = 5 TeV.
- $(m_{DY}, m_{D2}, \mu) = (400, 500, 600)$ GeV.
- $m_{\Delta}^{tree} = 600 \text{ GeV}.$
 - ullet In the scans we see that $m_A^{tree} \sim m_H \sim m_{H^\pm}$ because of small mixing.
 - \Rightarrow results not particularly sensitive to m_A^{tree} .

Precision Study: Results I (at M_{SUSY})

Dependence of the couplings on the $\mathcal{N}=2$ scale:

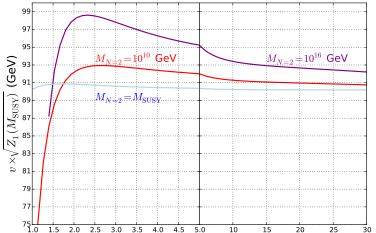
- Find $g_Y \sim 0.37$ and $g_2 \sim 0.64$ both at Q and M_{SUSY} , with little dependence on $M_{\mathcal{N}=2}$.
- Ratios show stronger dependence on $M_{\mathcal{N}=2}$.



 \rightarrow Enhancement of m_h due to λ_T splitting.

Precision Study: Results II (at M_{SUSY})

Tree level m_h before running $M_{SUSY} \rightarrow Q$.



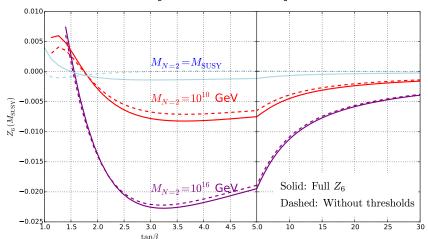
- Increasing $M_{\mathcal{N}=2}$ increases m_h .
- MSSM: m_h^{tree} goes like $m_Z |\cos \beta| \to \text{drops off for small } \tan \beta$.

Precision Study: Results III (at M_{SUSY})

Alignment in the Dirac Gaugino Model: $Z_6(M_{SUSY})$

Recall:

$$Z_6(M_{SUSY}) = \frac{1}{4} s_{2\beta} c_{2\beta} \left[(2\lambda_5^2 - g_Y^2) + (2\lambda_T^2 - g_2^2) \right] + \text{threshold corrections}.$$



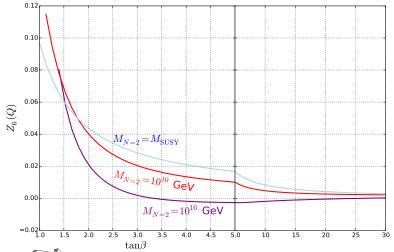
Estimation of Z_6 at Q

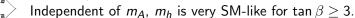
- Interpret corrections δ_{λ_i} as effect of integrating out supersymmetric particles at Q
 - Their effect is typically suppressed compared to the stop correction by
 - a numerical factor
 - g_2/y_t
- Effect of running from λ_S , λ_T non-negligible.
- Take m_A large with respect to m_h and m_Z , then

$$\Rightarrow Z_6 pprox \ rac{0.12}{t_{eta}} - rac{1}{2} rac{t_{eta}}{1 + t_{eta}^2} igg[(2\lambda_{S}^2 - g_{Y}^2) + (2\lambda_{T}^2 - g_{2}^2) igg]$$

Precision Study: Results IV (at Q)

Alignment in the Dirac Gaugino Model: $Z_6(Q)$



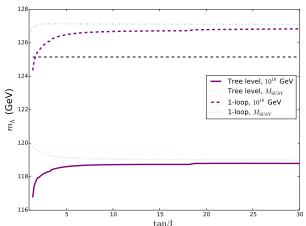


Discussion: $Z_6(Q)$

- ullet Reasonable fit of $Z_6(Q)$ with approximate formula
- Squark corrections enhance m_h but also misalignment
- ullet This misalignment is compensated for by the running of $\lambda_{\mathcal{S}}$ and $\lambda_{\mathcal{T}}$.
- ⇒ Partial or total cancellation of misalignment contributions!

Precision Study: Results V

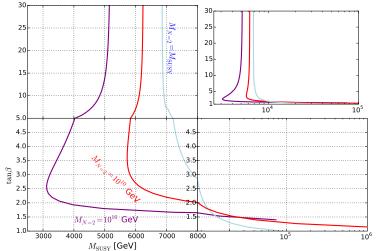
Effects of loop corrections in the low-energy theory on m_h .



ightarrow Loop effects from tops, heavy Higgses and electroweakinos boost m_h by ~ 5 GeV.

Precision Study: Results VI

Higgs mass bounds on the SUSY scale



• Minimum for M_{SUSY} around $\tan \beta \in (2,3)$.

Discussion: Errors on M_{SUSY} scale in the MDGSSM

- Uncertainty on the Higgs mass bounds very difficult to estimate.
- Expect contributions not included to be small.
 - \Rightarrow Expect $\Delta m_h \leq$ GeV in comparison with the MSSM.
- Expect smaller errors at lower M_{SUSY} .

Experimental Constraints I

Higgs couplings

ullet Model realises excellent alignment o no significant constraint from Higgs couplings.

Electroweak precision corrections

Current bound:

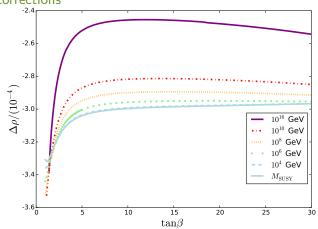
$\Delta \rho =$

 $(3.7 \pm 2.3) \times 10^{-4}$

 \rightarrow central value restricts

 $m_{T_+} > 2$ TeV.

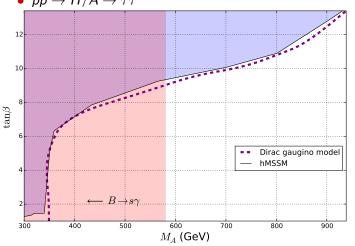
→ Always well within experimental bounds.



Experimental Constraints II

Strongest constraints come from flavour searches:

- B \rightarrow s γ
- $pp \rightarrow H/A \rightarrow \tau \tau$



Bounds $m_{H^{\pm}}$ > 580 GeV indep. of t_{β} .

Simplified analysis in other Dirac Gaugino models

The Minimal R-Symmetric Supersymmetric Standard Model (MRSSM)

- Preserve exact continuous R-symmetry by including two R-Higgs doublet superfields.
- Superpotential becomes:

$$\begin{split} \mathcal{W}_{\mathsf{Higgs}}^{\mathsf{MRSSM}} = & \quad \mu_{\mathbf{u}} \, \mathsf{R}_{\mathbf{u}} \cdot \mathsf{H}_{\mathbf{u}} + \mu_{d} \, \mathsf{R}_{\mathbf{d}} \cdot \mathsf{H}_{\mathbf{d}} + \lambda_{\mathcal{S}_{u}} \mathsf{S} \, \mathsf{R}_{\mathbf{u}} \cdot \mathsf{H}_{\mathbf{u}} + \lambda_{\mathcal{S}_{d}} \mathsf{S} \, \mathsf{R}_{\mathbf{d}} \cdot \mathsf{H}_{\mathbf{d}} \\ & \quad + 2 \lambda_{\mathcal{T}_{u}} \, \mathsf{R}_{\mathbf{u}} \cdot \mathsf{TH}_{\mathbf{u}} + 2 \lambda_{\mathcal{T}_{d}} \, \mathsf{R}_{\mathbf{d}} \cdot \mathsf{TH}_{\mathbf{d}} \, . \end{split}$$

• $\mathcal{N}=2$ supersymmetry must be imposed:

$$\lambda_{\mathcal{S}_u} = \frac{g_Y}{\sqrt{2}}, \qquad \lambda_{\mathcal{S}_d} = -\frac{g_Y}{\sqrt{2}}, \qquad \lambda_{\mathcal{T}_u} = \lambda_{\mathcal{T}_d} = \frac{g_2}{\sqrt{2}}.$$

• Can treat (R_u, H_u) and (R_d, H_d) as hypermultiplets.

Tree-Level Parameters

Tree-level THDM model parameters:

- In the limit of $|m_{DY}| \ll m_S, |m_{D2}| \ll m_T$
- Recall for the MDGSSM:

$$\lambda_1, \lambda_2 \to \frac{1}{4}(g_2^2 + g_Y^2), \qquad \lambda_3 \to \frac{1}{4}(g_2^2 - g_Y^2) + 2\lambda_T^2, \qquad \lambda_4 \to -\frac{1}{2}g_Y^2 + \lambda_S^2 - \lambda_T^2,$$

ullet For the MRSSM: $\lambda_i^{\mathrm{MRSSM}} o \lambda_i^{\mathit{MSSM}}$ and so

$$\lambda_i^{\rm MSSM}, \lambda_2^{\rm MSSM} \to \frac{1}{4}(g_2^2+g_Y^2), \qquad \lambda_3^{\rm MSSM} \to \frac{1}{4}(g_2^2-g_Y^2), \qquad \lambda_4^{\rm MSSM} \to -\frac{1}{2}g_Y^2.$$

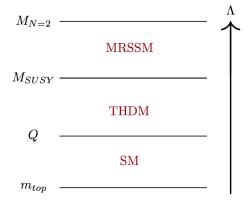
Alignment in the $\mathcal{N}=2$ MRSSM

- No automatic alignment.
- For m_S, m_T large: THDM parameters $\lambda_i \to \lambda_i^{MSSM}$
 - \Rightarrow No contribution from $\lambda_{T_{u,d}}, \lambda_{S_{u,d}}$ to Z_6 .
- With radiative corrections: for non-zero $\lambda_{T_{u,d}}, \lambda_{S_{u,d}}$
 - No shift to Z_6 from the adjoint scalars.
 - Enhancement of Z_1 .
 - Insignificant Z_1 enhancement if $m_S, m_T \sim m_{\tilde{t}}$
 - If m_S , m_T very heavy:
 - Improved alignment compared to the MSSM.
- Alignment never as good as in MDGSSM because of tree-level contribution to misalignment.

Effective Field Theory Tower for the MRSSM

- Alignment only different from MSSM when m_S, m_T very large
 - For a precise analysis, would need a tower of EFTs and appropriate threshold corrections.

⇒ Simplified model:



Numerical Analysis in the MRSSM: Procedure

Iterative method to converge λ_i and $\lambda_{S,T_{u,d}}$ couplings, before mapping back onto the Higgs quartic, λ .

$$m_{top} o Q$$

- 2I matching Yukawas, gauge and Higgs quartic couplings to SM values.
- Running: 21 SM in SARAH.

$$Q \rightarrow M_{SUSY}$$

- Iterative process to determine λ_i .
- Running: 2l Low energy THDM in SARAH.

$$M_{SUSY} \rightarrow M_{\mathcal{N}=2}$$

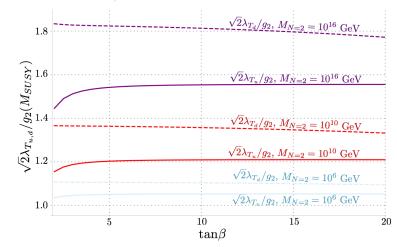
- 1l threshold corrections to S, T.
- Running: 21 MRSSM in SARAH.

Assumptions

- ullet Neglect all loop-level thresholds other than those from S and T.
- Q = 600 GeV.
- Degenerate adjoint scalar masses, M_{Σ} .

MRSSM results: I

Dependence of $\lambda_{T_{u,d}}/g_2$ on the $\mathcal{N}=2$ scale

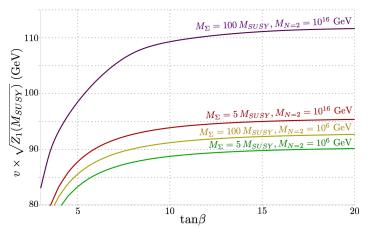


$$M_{SUSY} = 10 \text{ TeV}$$

 $M_{\Sigma} = 10 M_{SUSY}$

MRSSM results: II

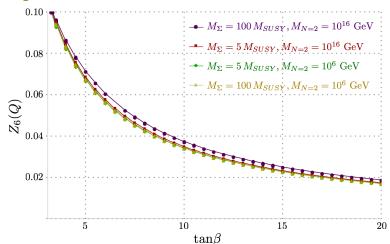
"Tree level" Higgs mass at M_{SUSY}



• Extremely boosted value for extreme M_{Σ} and $M_{\mathcal{N}=2}$ due to almost non perturbative λ_T couplings

MRSSM results: III

Alignment at Q



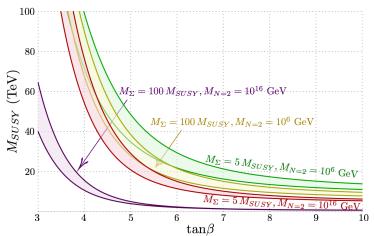
Little deviation in Z_6 , regardless of M_{Σ} and $M_{\mathcal{N}=2}$.

Discussion: Alignment in the MRSSM

- $Z_6(Q)$ similar to in the MSSM case.
- Adjoint scalars never give a large boost to the Higgs quartic.
- When very high $M_{\mathcal{N}=2}$ and heavy M_{Σ} , the couplings are considerably enhanced
 - \Rightarrow Worse alignment.

MRSSM results: IV

Approximate Higgs mass bounds on M_{SUSY} in the MRSSM



- For tan β < 4, $M_{SUSY} \ge 20$ TeV.
- Potentially unreliable results for large M_{Σ} and M_{SUSY} .

Discussion: M_{SUSY} in the MRSSM

• S, T give very small boost to m_h but see noticeable effects in M_{SUSY} .

Errors

- Here we take $m_h=125\pm0.5$ GeV.
- Error on M_{SUSY} grows as M_{SUSY} increases:
 - Recall corrections to parameters $\propto y_t^4 \log \frac{m_{\tilde{t}}^2}{m_r^2}$
 - As $M_{SUSY} \uparrow$, $y_t \downarrow$
 - \Rightarrow Require bigger shift in M_{SUSY} to get m_h
 - Results at lower M_{SUSY} more accurate.
- EFT approach is less accurate when $M_{SUSY} \leq \text{TeV}$.

Conclusions

In the MDGSSM:

- Alignment is realised naturally in \mathcal{M}_h , and preserved by quantum corrections.
- The splitting of λ_S and λ_T from the $\mathcal{N}=2$ relations
 - Boosts m_h
 - Lowers M_{SUSY}
 - Improves alignment
- M_{SUSY} could be as low as 3 TeV.

In the MRSSM:

ullet Enforced $\mathcal{N}=2$ can increase alignment with respect to the MSSM, in the limit of large adjoint scalar masses