

NOEMA and NIKA2 synergies

C. Lefèvre, C. Kramer, R. Neri

Outline

NOEMA performances vs NIKA2

- Frequency coverage
- Sensitivities
- Beam sizes / Field of View

NOEMA and NIKA2 Synergies:

- Follow up from large scales to small scales (Massive SF regions)
- Line contamination (Galactic sources and High Redshift Galaxies)
- Point source contamination (Deep Field and SZ)
- NIKA2 as short spacing for NOEMA (Mapping the Interstellar Medium)
- SZ with interferometers (SZ)

NOEMA frequency ranges

NOEMA:

All frequency range available 2 x 15.5 GHz = 2 polarisations X 2 Side Bands of 7.744GHz each

NIKA 2:

Fixed frequency range

2mm atmospheric window + part of 1mm window

Observations are possible in atmospheric windows

NOEMA frequency ranges vs NIKA2

7.744 GHz

B3VUO

B3HUQ

USB⁷⁰

B3VUI

B3HU)

260

NOEMA frequency ranges vs NIKA2

Heterodyne Receivers (like EMIR)

mm Universe @ NIKA2 - 5th of June

But not the same FoV and Beam sizes

	Bandwidth	FoV	Beam size (e (")
	GHz		Α	С	D
NOEMA 2 mm	127 - 183	$33''(150\mathrm{GHz})$	0.6	1.3	2.6
NIKA2 2 mm	125 - 175	6.5'	17.7		

NOEMA 1 mm	196 - 276	$19''(260\mathrm{GHz})$	0.35	0.75	1.5
NIKA2 1 mm	230 - 280	6.5'		11.2	

Outline

NOEMA performances vs NIKA2

- Frequency coverage
- Sensitivities
 - Beam sizes / Field of View

NOEMA and NIKA2 Synergies:

- Follow up from large scales to small scales (Massive SF regions)

a lactic sou

contamination (Dee

Follow up: zooming in SF regions of galaxies

How do form massive stars?

Massive star-forming regions (proto-clusters) embedded within their natal cores (mm) Initial massive cores mass function vs IMF (stellar mass function of final stars) mm Universe @ NIKA2 - 5th of June

Sample

regions

Follow up: zooming in SF regions of galaxies

Maps at 1.37 mm

IRAM 30m > 20 hours NOEMA (A, B, D configs) ~ 18 hours per source

~ 0.4" beam size ~1000 AU at 3kpc

CORE program : Fragmentation of high-mass star forming cores H. Beuther et al. (2018)

Follow up: zooming in SF regions of galaxies

CORE program : Fragmentation of high-mass star forming cores H. Beuther et al. (2018)

Outline

NOEMA performances vs NIKA2

- Frequency coverage
- Sensitivities
 - Beam sizes / Field of View

we wo in the start go

NOEMA and NIKA2 Synergies:

- Line contamination (Galactic sources and High Redshift Galaxies)
- Point source contamination (Deep Field and SZ)

Line contamination for Galactic sources

More sensitivity = More molecules detected

NOEMA can help to estimate line contamination apart from CO

> Will depend on excitation conditions (temperature, shocks, etc)

Line contamination for High-z sources

Point source contamination - Deep Field

12 sources extracted + 3 more with correlations with known sources at 1.2 mm and 850 μm Maps were smoothed

from 17. 5" FWHM to an effective 24. 7" FWHM image resolution for point-source extraction.

Point source SEDs with NOEMA

NOEMA complementarity :

Point source identification

- Flux measurement without extrapolation e.g. from Herschel (SZ)
- Estimate other contributions thanks to 3 mm band: Free-free, synchrotron

Outline

NOEMA performances vs NIKA2

- Frequency coverage
- Sensitivities
 - Beam sizes / Field of View

low-up from arge

NOEMA and NIKA2 Synergies:

- Short spacing for NOEMA with NIKA2 (Mapping the ISM)

e contampation (Deep, L

actic sour

Short spacing

Short spacing

Example of Short-spacing IRAM 30m MAMBO2 + ACA

IRAM 30m MAMBO2 (117 pixels) P.I. : André

A centrally concentrated sub-solar mass starless core in the Taurus L1495 filamentary complex

> Tokuda et al. 2019 arXiV 1904.05490

ALMA Compact Array 7m

mm Universe @ NIKA2 - 5th of June

Example of Short-spacing IRAM 30m MAMBO2 + ACA

NOEMA capabilities for Mosaics increased

Molecular clouds in IC342 - PI A.Schruba (MPE) at 3 mm

- ▷ D = 3.3 Mpc, M(gas) = 10¹⁰ M_☉, SFR = 1.9 M_☉/yr
- ➤ NOEMA + IRAM 30m cover 70% of the SF disk
- > NOEMA = 1250-field mosaic, 60 pc resolution = 3.8"
- > 1500 molecular clouds with S/N > 5

Outline

NOEMA performances vs NIKA2

- Frequency coverage
- Sensitivities
 - Beam sizes / Field of View

How-updrom-afge

NOEMA and NIKA2 Synergies:

actic sou

- SZ with interferometers (SZ)

ce contamnation

			Frequency	Bandwidth			Reference
Name	Location	Ndish	(GHz)	(GHz)	Primary beam	l	
OVRO	U.S.	6	30	2.0	4′	6750	[1]
VLA	U.S.	27	8	0.2	5'	6000	[5, 15]
IRAM	France	3	88	0.4	55″	3000-70000	[20]
Ryle	England	8	15	0.4	6'	4500	[8]
BIMA	U.S.	10	30	0.8	6'	5000-9000	[3]
ATCA	Australia	6	9	0.1	8'	3400	[25]
T-W	U.S.	2	43		2°	20-100	[27]
IAC-Int	Tenerife	2	33	0.5	2°	110-220	[7]
CAT	England	3	13-17	0.5	2°	339-722	[24]
VSA	Tenerife	14	26-36	1.5	4.°6/2.°1	150-1600	[4]
DASI	South Pole	13	26-36	10.0	3°	125-700	[6, 9]
CBI	Chile	13	26-36	10.0	45'/28'	630-3500	[14, 22, 26]
SZA	U.S.	8	30 & 90	8	12'/4'	4000	[23, 12]

+ ALMA (cf E. Pointecouteau talk)

Dickinson (2012, arXiv 1212.1729)

			Frequency	Bandwidth			Reference
Name	Location	Ndish	(GHz)	(GHz)	Primary beam	l	
OVRO	U.S.	6	30	2.0	4′	6750	[1]
VLA	U.S.	27	8	0.2	5'	6000	[5, 15]
IRAM	France	3	88	0.4	55″	3000-70000	[20]
Ryle	England	8	15	0.4	6'	4500	[8]
BIMA	U.S.	10	30	0.8	6'	5000-9000	[3]
ATCA	Australia	6	9	0.1	8'	3400	[25]
T-W	U.S.	2	43		2°	20-100	[27]
IAC-Int	Tenerife	2	33	0.5	2°	110-220	[7]
CAT	England	3	13-17	0.5	2°	339-722	[24]
VSA	Tenerife	14	26-36	1.5	$4.^{\circ}6/2.^{\circ}1$	150-1600	[4]
DASI	South Pole	13	26-36	10.0	3°	125-700	[6, 9]
CBI	Chile	13	26-36	10.0	45'/28'	630-3500	[14, 22, 26]
SZA	U.S.	8	30 & 90	8	12'/4'	4000	[23, 12]

+ ALMA (cf E. Pointecouteau talk)

Dickinson (2012, arXiv 1212.1729)

SZ with interferometers:

low systematics = suitable for weak SZ signal

 separate the diffuse negative SZ emission from small-scale positive point-source emission through spatial filtering

SZ is primarily present in short baselines but not point sources

- needs models to be fitted in the uv plane rather than image deconvolution
- larger scales are filtered out = sensitive to small scales temperature gradients

Shortest NOEMA baseline: classic mapping mode = 15 m mosaic mode ~ 7.5 m

- needs models to be fitted in the uv plane rather than image deconvolution
- larger scales are filtered out = sensitive to small scales temperature gradients
- joint studies are suitable

Interferometers are sensitive to scales $\sim \lambda/2D$

BIMA 2.8 arcmin

ALMA (ACA) 3mm ~ 50 arcsec @ 90GHz NOEMA 3mm ~ 30 arcsec @ 70 GHz

NOEMA 2mm ~ 14 arcsec @ 150 GHz can be combined with NIKA2 !

ALMA-Bolocam-Planck SZ study of the pressure distribution in RX J1347.5–1145 (Di Mascolo et al., 2018)

- needs models to be fitted in the uv plane rather than image deconvolution
- larger scales are filtered out = sensitive to small scales temperature gradients
- joint studies are suitable

Small departure from Universal Profile cf F. Mayet talk

- surface brightness sensitivity and not point source source sensitivity matters:

$$S = \frac{2kT_b\Omega}{f\lambda^2}$$

with

Relation between brightness temperature and surface brightness

$$f = N(D/d)^2$$

Filling factor of the array

Single Dish: f = 1 NOEMA 10 antennas: f ~ 0.22 **D = 15 m , d = 100 m**

Final thoughts

NOEMA future upgrades

More sensitivity:

- 2 more antennas for 2022
- Dual Band receiver (1+3 mm Prototype end of September 2019)

More angular resolution:

- Baseline extension (starting summer 2019)
- Band 4 (0.8 mm)

+ Polarisation: Full Stokes parameters

Final thoughts

NOEMA future upgrades

More sensitivity:

- 2 more antennas for 2022
- Dual Band receiver (1+3 mm Prototype end of September 2019)

More angular resolution:

- Baseline extension (starting summer 2019)
- Band 4 (0.8 mm)
- + Polarisation: Full Stokes parameters

NOEMA in practice

Proposals through our Proposal Management System with time estimator included

In practice: Friends of Project for NIKA2 vs Local contact for NOEMA

Data reduction fully supported for NOEMA (GILDAS)