1 mm array Progress on NIKA2 future development

On behalf of the NIKA2 instrument team

UNIVERSITÉ

Grenoble

Alpes

THE INSTRUMENT: DETECTORS

- Hilbert-type LEKID pixels
- Microstrip feedline
- 18 nm aluminium

	A1 (1mmV)	A2 (2mm)	A3 (1mmH)
Pixel count	1140	616	1140
Pixel size	2x2 mm ²	2.8x2.8 mm ²	2x2 mm ²
F·λ	1	1	1
f _{reso}	1.9-2.5GHz	0.9-1.4GHz	1.9-2.5GHz

Frequency band determined by substrate thickness ($3\lambda/4$ for $1mm = 250 \mu m$)

R. Adam et al., A&A **609**, A115 (2018).

Future developments of NIKA2

- Optical response of NIKA2 1mm array
- Higher angular resolution
- More working pixels
- ► A 4" full-frame test array

Optical response of LEKID arrays

LEKIDs Back short

- Floquet port: a plain wave expansion
- ▶ 18 modes for 150 350 GHz
- Two polarizations
- 1.6 Ohm/sq for 20 nm Al
- ► 250 µm Si substrate

Optical response of LEKID arrays

inductor area: 1.5*1.6 mm²

filling factor = $\frac{\text{inductor area}}{\text{pitch size}^2}$

Pitch size [mm]	filling factor	Pol 1	Pol 2
2.0	60.0%	61.7%	41.2%
2.2	49.6%	48.2%	35.8%
2.4	41.7%	44.8%	31.0%
2.6	35.5%	41.7%	28.4%

Averaged absorption efficiency

Absorption efficiency of inductor (230 - 290 GHz) $\approx 100\%$ for Pol 1 $\approx 70\%$ for Pol 2

Optical response of LEKID arrays

250 µm -> 260 µm = 10 GHz shift

Future developments of NIKA2

- Optical response of NIKA2 1mm array
- Higher angular resolution
- More working pixels
- ► A 4" full-frame test array

- Diffraction limit of the 30-m telescope
- Lower the confusion limit
- Doubled number of pixel
- Smaller inductor volume

- the planet image on focal plane <-> point spread function on telescope
- Mapping: move the planet in y-direction at fixed x position
- X step: 1 mm = 0.17 mm on the array
- The metal ball diameter: 4 mm (0.68 mm on the array)

11

	Inductor	Inductor	Pitch	Resolution	Resolution	Responsivity
	size [mm ²]	volume	[mm ²]	in-lab	on-sky	[kHz]
Big pixel	1.6×1.5	1149 µm ³	2×2	$10.5\pm0.4^{\prime\prime}$	10.9"[9]	106 ± 6
Small pixel	1.0 imes 1.0	449 µm ³	1.4×1.4	$9.8\pm0.2^{\prime\prime}$	10.2"(expected)	202 ± 32

Responsivity
$$\propto \frac{\alpha Q}{V} = 1.7$$

Future developments of NIKA2

- Optical response of NIKA; 100
- Higher angular resolution
- More working pixels

Wavelength (central) [mm]	2.0	1.2	1.2 (A1)	1.2 (A3)
Frequency (central) [GHz]	150	260		
Measured central frequency [GHz]	152	257	256	258
NEFD ⁽¹⁾ [mJy×s ^{1/2} /beam] goal	10	15		
NEFD ⁽¹⁾ [mJy×s ^{1/2} /beam] specification	20	30		
Measured NEFD ⁽¹⁾ [mJv×s ^{1/2} /beam]	≲ 10 [TBC]	≲ 40 [TBC]	≲ 60 [TBC]	≲ 50 [TBC]
Fraction of usable pixels (KID)	90 %	84 %	84 %	84 %
Fraction of used pixels (KID)	70%	60%	58%	64%

|S21|² [dB]

- Absolute deviation $f_{meas}-f_{des}$: μ =-1.7 MHz σ =0.46 MHz
- Fractional deviation (f_{meas}-f_{des})/f_{des}: μ=-6.4e-4 σ=1.8e-4
 Shu et al. (2018) APL, 113(8), 082603

108 out of 112 pixels: 96.7%

Future developments of NIKA2

- Optical response of NIKA2 1mm array
- Higher angular resolution
- More working pixels
- A 4" full-frame test array

Trimming test array

- 1-inch wafer
- 112 pixels
- 1*500 MHz
- 112 pixels per readout line
- 4.5 MHz spacing
- Filling factor: 51%
- Trimming accuracy 0.25-0.5MHz

before trimming fmeas-fdes fmeas-fdes 40 40 - 75 30 30 - O 20 20 50 Frequency deviation [MHz] Frequency deviation [MHz] Position on wafer [mm] Position on wafer [mm] 10 10 25 0 0 0 -10 -10 -25 -20 -20 ¥.000 -50 -30 -30 -20 -75 -40 -40 -20 -20 -40 -400 0 Position on wafer [mm] Position on wafer [mm]

after trimming

Feedline	1	3	4	All
Number in design	276	312	332	920
Mapped before trimming	182	228	225	635
Mapping yield before trimming	65.9%	73.1%	67.8%	69.0%
Mapped after trimming	210	242	249	701
Mapping yield after trimming	76.1%	77.6%	75%	76.2%
Readout problem	9	15	21	45
Total resonances	219	257	270	746
Fabrication yield	79.3%	82.4%	81.3%	81.1%

20% pixels are already broken before trimming

Conclusions

- Current NIKA2 1mm band pixel has 100% absorption efficiency in one polarization and 70% for another polarization.
- ► Angular resolution 10.9" -> 10.2" with 1mm inductor.
- ► Optical yield 70.7% -> 96.4% with 0.46 MHz deviation (1.8e-4).
- ► A ~2400 pixel 4" array is tested:
 - Limited by fabrication yield: 80%
 - Readout board: maximum 250 pixels
 - Film property: aging problem
 - One 4-inch trimmed array = 4 cool-downs
 - 4-week measurement + 1-week analysis + 1-week production = 6 weeks