Dust evolution from prestellar cores

- Charlène Lefèvre -IRAM

In collaboration with M. Min, L. Pagani, H. Hirashita

Motivations to study dust in molecular clouds

Credit : M. Persson, ESO/NASA/ESA,ALMA

Grain growth by coagulation well before the formation of future planets

Motivations to study dust in molecular clouds

Credit : M. Persson, ESO/NASA/ESA,ALMA

Grain growth by coagulation well before the formation of future planets

on top of dust grains = Icy Mantles Motivations to study dust in molecular clouds

- Dust is an indirect tracer of mass
 pre-stellar cores and disks
- Mass deduced from mm observations if optically thin :

$$\begin{split} M_{disk} \propto \frac{Flux}{\kappa_{abs}(\nu) \, B(\nu, T_{disk})} \\ \end{split}$$

Composition: a factor of 10 on emissivity !

- Amorphous silicates analogs
- For iron rich silicates the emissivity is decreasing by a factor of 10 at 1 mm (NOEMA/ALMA/NIKA2) !
- Dust models based on a fixed composition are too limited.

Open access code to compute dust properties SIGMA (Lefèvre, Min, et al. subm. 2019)

https://github.com/charlenelefevre/SIGMA (DOI 10.5281/zenodo.2573886)

Simple Icy Grain Model for Aggregates

Suitable dust model for :

- Prestellar cores to protoplanetary disks
- Debris disks

Goal is to be able to reproduce models from literature and to be able to deviate from them

Open access code to compute dust properties SIGMA (Lefèvre, Min, et al. subm. 2019)

https://github.com/charlenelefevre/SIGMA (DOI 10.5281/zenodo.2573886)

Open access code to compute dust properties SIGMA (Lefèvre, Min, et al. subm. 2019)

https://github.com/charlenelefevre/SIGMA (DOI 10.5281/zenodo.2573886)

output of SIGMA

$$\begin{bmatrix} I_{\text{S,sca}} \\ Q_{\text{S,sca}} \\ U_{\text{S,sca}} \\ V_{\text{S,sca}} \end{bmatrix} = \frac{\lambda^2}{4\pi^2 D^2} \begin{bmatrix} F_{11} & F_{12} & 0 & 0 \\ F_{12} & F_{22} & 0 & 0 \\ 0 & 0 & F_{33} & F_{34} \\ 0 & 0 & -F_{34} & F_{44} \end{bmatrix} \times \begin{bmatrix} I_{\text{S,inc}} \\ Q_{\text{S,inc}} \\ U_{\text{S,inc}} \\ V_{\text{S,inc}} \end{bmatrix}$$

Scattered Stokes Vector

MUELLER MATRIX

Incident Stokes Vector

https://github.com/charlenelefevre/SIGMA (DOI 10.5281/zenodo.2573886) SIGMA Originality :

Approximate method to reproduce exact computation = short computation time

Split between dust geometry (shape, sizes) and dust composition

https://github.com/charlenelefevre/SIGMA (DOI 10.5281/zenodo.2573886) SIGMA Originality :

Approximate method to reproduce exact computation = short computation time

Split between dust geometry (shape, sizes) and dust composition

Effective Medium Theory (EMT) and Distribution of Hollow spheres (DHS)

Interplanetary dust

Free parameters :

Shape : Aggregate (Distribution of Hollow Spheres DHS)
 Computation trick to mimic departure from spherical shape
 Method: Min et al. (2003, 2005)

Review of methods: Tazaki et al. 2018

Interplanetary dust

Free parameters :

Shape : Aggregate (Distribution of Hollow Spheres DHS)
 Computation trick to mimic departure from spherical shape
 Method: Min et al. (2003, 2005)

Review of methods: Tazaki et al. 2018

Grown grains are not spheres, ellipsoids or made of a limited number of subgrains !

- **DHS** well suited for **compact aggregates** (fractal degree Df ~ 3)
- More elongated grains (Df ~ 1.8) will be implemented in SIGMA
 - in the future (MMF Tazaki et al. 2018)

The code is thought to evolve and include different methods !

Free parameters :

- Shape : Aggregate (Distribution of Hollow Spheres DHS)
- Composition : from laboratory measurements
- mixture + porosity + ice mantles

SIGMA takes **tabulated complex refractive indexes** from any laboratory database (m = n-ik)

Free parameters :

- Shape : Aggregate (Distribution of Hollow Spheres DHS)
- Composition : from laboratory measurements
- mixture + porosity + ice mantles

Computation done with SIGMA:

Behavior of laboratory measurements is reproduced by SIGMA thanks to flexibility in terms of composition

Free parameters :

- **Shape :** Aggregate (Distribution of Hollow Spheres DHS)
- **Composition :** from laboratory measurements
 - mixture + porosity + ice mantles

10⁵ SIGMA **10⁴** 10^{3} $\begin{bmatrix} 10^{3} \\ \text{K} \\ \text{m} \\ \text{K}^{\text{aps}} \end{bmatrix} \begin{bmatrix} 10^{3} \\ \text{K}^{\text{aps}} \\ 10^{2} \\ 10^{1} \end{bmatrix}$ thin ice mantles: 33% thick ice mantles: 90% 10° Walmsley+2004 = **79% thickness max 10**⁻¹ **10**¹ 10^{2} 10^{0} 10^{3} Spherical dust comparable to Ossenkopf (1994)

Free parameters :

- Shape : Aggregate (Distribution of Hollow Spheres DHS)
- Composition : from laboratory measurements
 - mixture + porosity + ice mantles

Free parameters :

- Shape : Aggregate (Distribution of Hollow Spheres DHS)
- Composition : from laboratory measurements
 - mixture + porosity + ice mantles

Eice

Free parameters :

- **Shape :** Aggregate (Distribution of Hollow Spheres DHS)
- **Composition :** from laboratory measurements mixture + porosity + ice mantles
- Size distribution : Any kind e.g. power law (collisional cascades) or output of dynamical coagulation

Dynamical coagulation = evolution of dust size distribution :

- turbulence (temperature, density)
- relative velocity between grains
- variable porosity as a function of size

with H. Hirashita

What candidates to investigate dust evolution with NIKA2 ?

21

Dust evolution in prestellar cores from MIR scattering

Modeling compatible with Herschel observations

acknowledgements: N. Ponthieu, B. Ladjelate, J.F. Lestrade and NIKA2 collaboration

acknowledgements: N. Ponthieu, B. Ladjelate, J.F. Lestrade and NIKA2 collaboration

Preliminary results L183

L134

VERY PRELIMINARY Spitzer: L134N and L134S have the same scattering intensity

- NIKA2: Strip 1 was observed but L134S barely detected L134N not yet detected
- Temperature effect and better constraints for Radiation Field

Summary of goals

