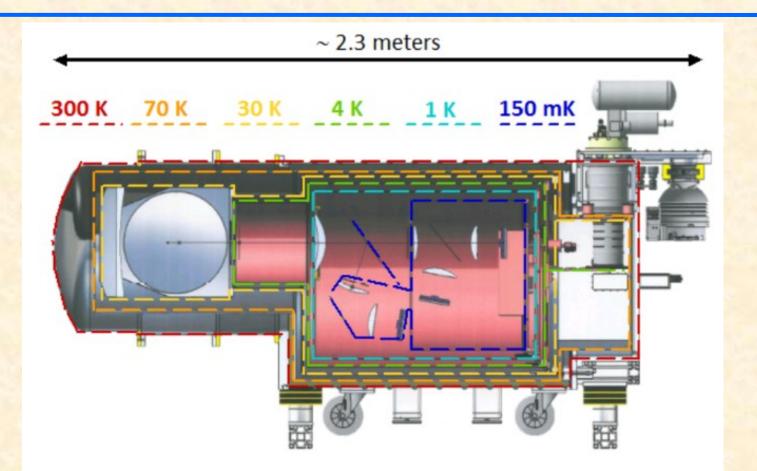
NIKA2 Description, status and possible upgrades

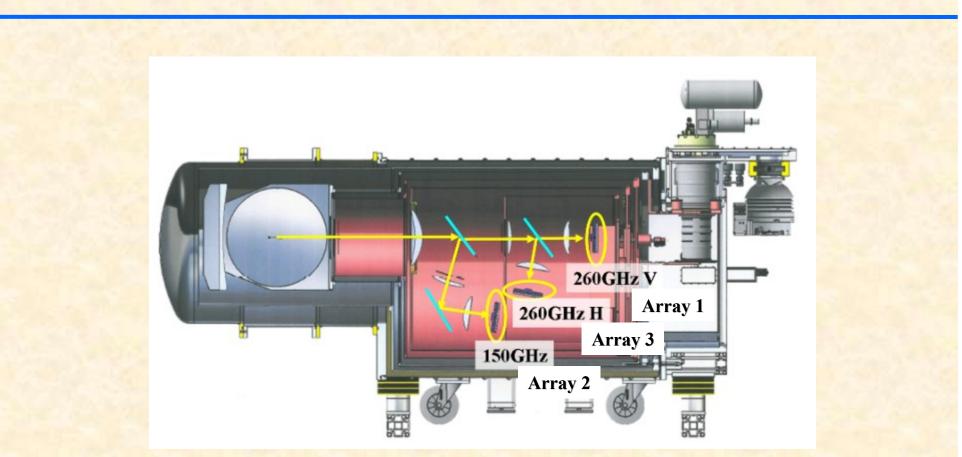


NIKA2 description

The NIKA2 team, Astronomy & Astrophysics 609, A115 (2018)

NIKA2 cryostat

Around 100 kg cooled to base temperature, in particular several kg of plastic and low-conductance black glue. <u>Remotely controlled</u>.


The NIKA2 team, Astronomy & Astrophysics 609, A115 (2018)

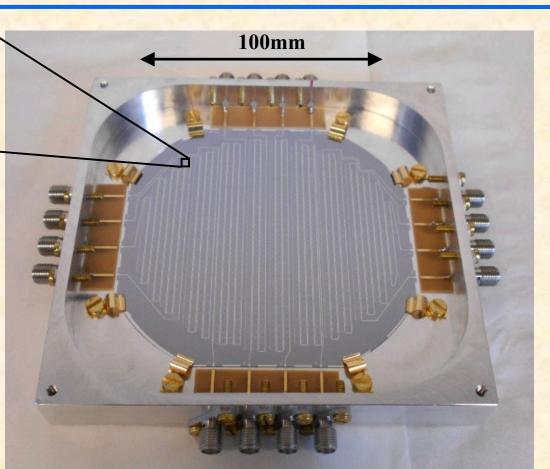
LPSC - 03/06/2019

3

NIKA2 arrays

Array 2 \rightarrow 2mm (150 GHz) – 616 pixels Arrays 1 and 3 \rightarrow « 1mm » (260 GHz) - 1140×2 pixels

The NIKA2 team, Astronomy & Astrophysics 609, A115 (2018)

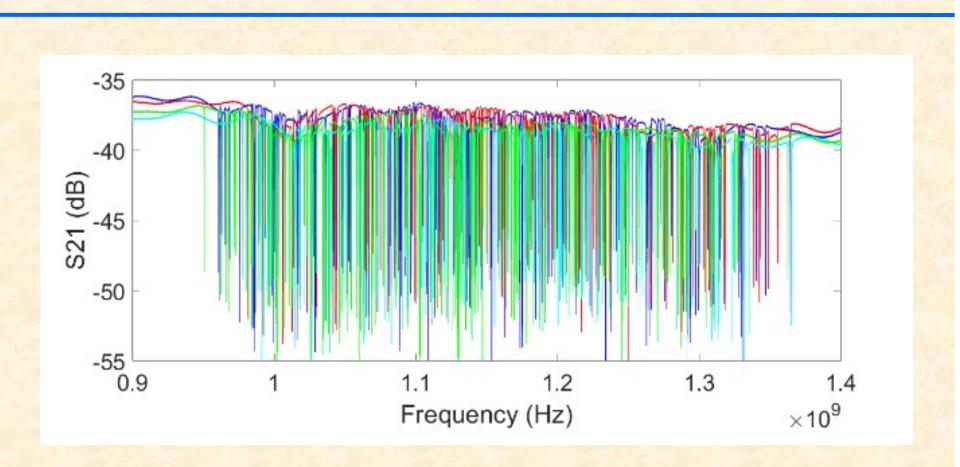


NIKA2 detectors

See J. Goupy talk

Compared to NIKA1 we have further simplified our already « fast » (but efficient) KID technology

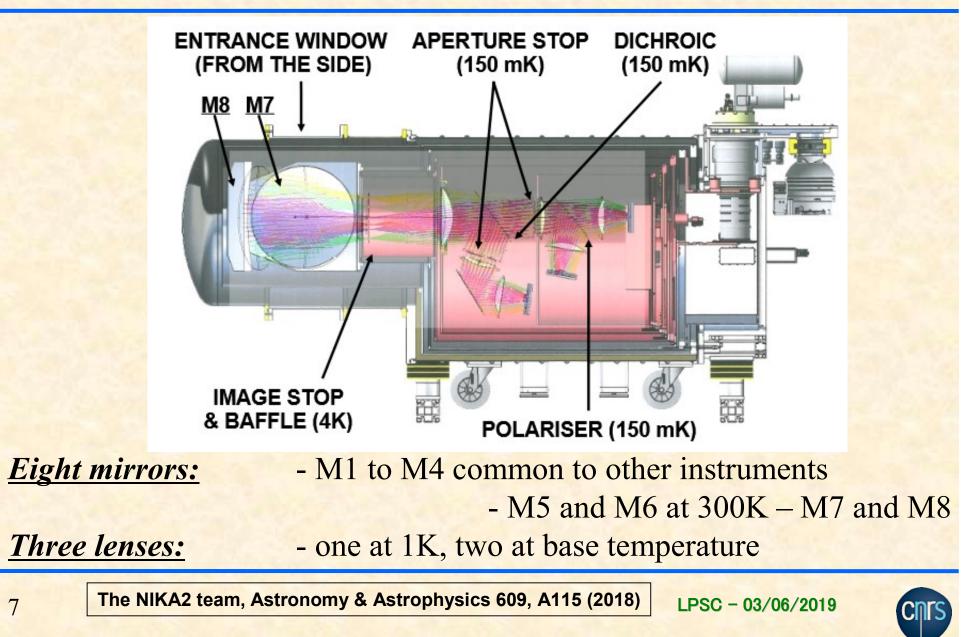
Front-illuminated, **microstrip coupled**, pixels 2(2.8)×2(2.8)mm²



ADVANTAGES: single mode, easy packaging, robust, no penalties for sensitivity for selected applications (e.g. NIKA2)

The NIKA2 team, Astronomy & Astrophysics 609, A115 (2018)

NIKA2 detectors



<u>Array 2:</u> the four readout lines over the 500 MHz band In lab 580/616 are identified and show a beam (94%)

The NIKA2 team, Astronomy & Astrophysics 609, A115 (2018)

NIKA2 optics

NIKA2 electronics

<u>COLD</u>

A number of properly selected and mounted passive components

LNA (Low Noise Amplis) from Yebes and TTI Norte

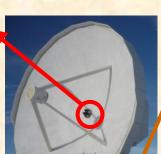
260.35 mi MEAS MEAS MEAS MEAS MEAS MEAS MEAS MEAS EXC EXC EXC EXC 311 mm (7U) O FM O FM O FM O FM FM FM FM POWER SUPPLY NIKEL_AMC CONKEL_AMC DO NIKEL_AMC SO NIKEL_AMC AMC O NIKEL_AMC NIKEL_AMC MCH+CCSB NIKEL NIKEL

ROOM TEMPERATURE

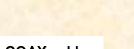
482.6 mm (19")

NIKEL AMC ad-hoc system:

- Bandwidth: 500MHz
- Up to 400 channels/board
- Maximum data rate 1KHz


The NIKA2 team, Astronomy & Astrophysics 609, A115 (2018)

NIKA2 installation (10/2015)



The cryostat in the receivers cabin

60 meters of pipes

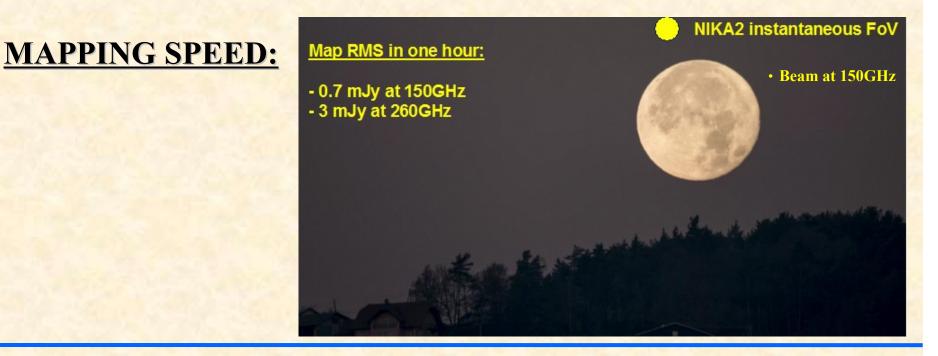
The 40 COAX cables

The dilution gas handling in the basement

NIKA2 figures:

- 2900 pixels over 3 arrays
- 1.2 tons; 2.5 m long; 3000 pieces
- Two Pulse Tubes
- Fully remote control
- Completely cryogen free
- Base T ≈ 150 mK

The NIKA2 team, Astronomy & Astrophysics 609, A115 (2018)



9

NIKA2 summary

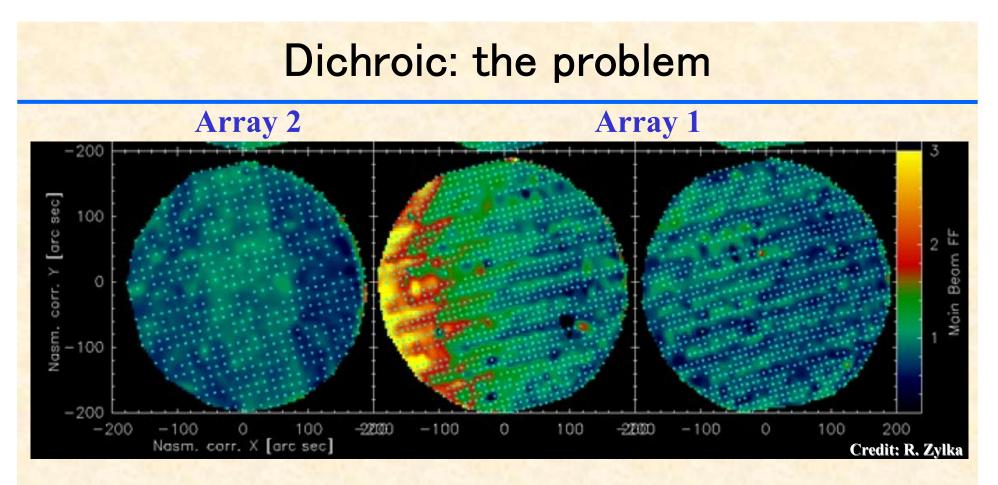
DATASHEET:

Instantaneous <u>field-of-view</u>: 6.5 arc-min <u>Bands</u>: 125÷175 GHz and 230÷280 GHz <u>Angular resolution</u>: 17.6 arc-sec and 11.1 arc-sec <u>Polarimetry</u> at 260GHz (to be choosen as an option)

NIKA2 status

See for example M. Calvo, L. Perotto, N. Ponthieu, B. Ladjelate, A. Ritacco and other talks

NIKA2 Limitations and possible improvements



Dichroic: the story

DICHROIC 1 (rigid, 2015): 2mm beams not nice but transmission OKDICHROIC 2 (membranes, from 2016): 1mm transmission affectedDICHROIC 3 (rigid, 2018): 2mm beams destroyed but transmission OK

NOW DICHROIC 2 back in place (September 2018)

The NIKA2 flat fields show, <u>since the installation of dichroic 2</u>, a striking (bad) feature in particular on Array 1. This results in practice in a penalty of sensitivity for the « 1mm band » of 20% (at least).

N.B. Array 1 was by far the best « 1 mm » array

Dichroic: possible solutions

THE LONG STORY:

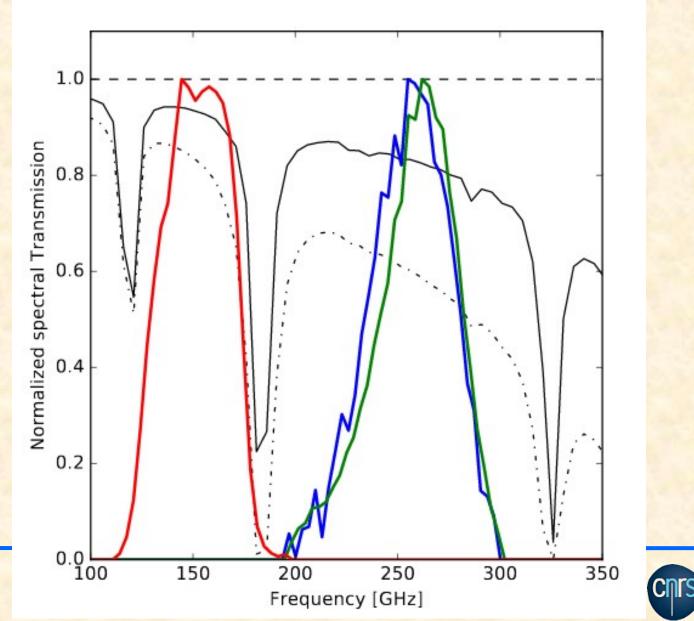
DICHROIC 1 (rigid): 2mm beams not nice but transmission OK DICHROIC 2 (membranes): 1mm transmission affected DICHROIC 3: 2mm beams destroyed but transmission OK

PROBLEM:

the « membranes » dichroic cannot be optimised for transmission AND the rigid ones bend (but ONLY when cold !!)

SOLUTION(S) (?):

We have demonstrated even in lab that it can bend. Strategies: - « Try and error »: might converge but must accept work/risk - « Proper engineering »: waiting for inputs. Risk=0 ? YES for now

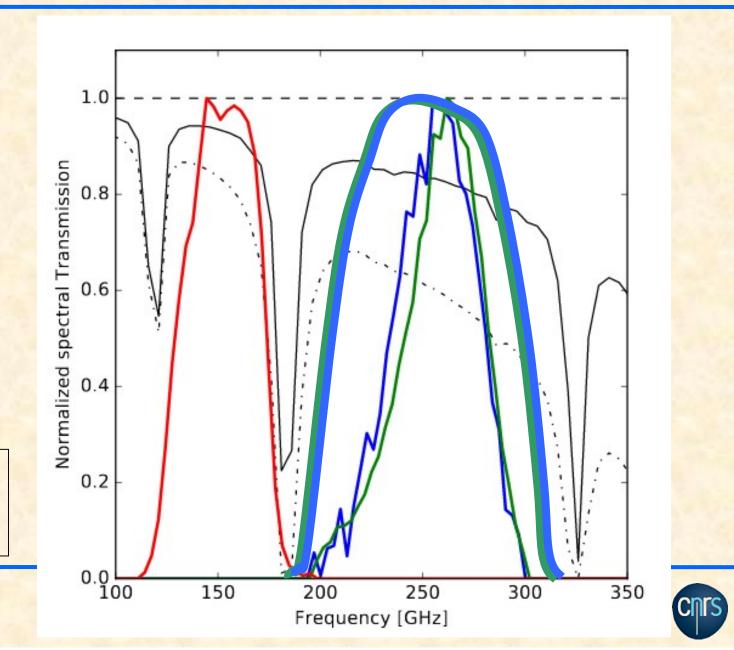

"1mm" arrays bandwidth

ADVANTAGE:

The present « 1mm » arrays were designed (after the NIKA1 experience) to be <u>robust against</u> <u>high background and</u> <u>sky noise</u>.

DRAWBACK:

They are <u>not</u> <u>optimised for best</u> <u>sensitivity in best</u> <u>sky conditions</u>


"new 1mm" arrays bandwidth

ADVANTAGE: Optimised for best (but rare) sky conditions and high elevations

DRAWBACK: Higher sensitivity goes with more stringent cuts on acceptable sky/elevation conditions

THREE SUCH ARRAYS AVAILABLE !

17

New 1GHz NIKEL electronics

For the CONCERTO project we are developing a larger band (1 GHz) warm electronics.

Once validated, it might be offered to NIKA2 (subjected to funding), allowing to:

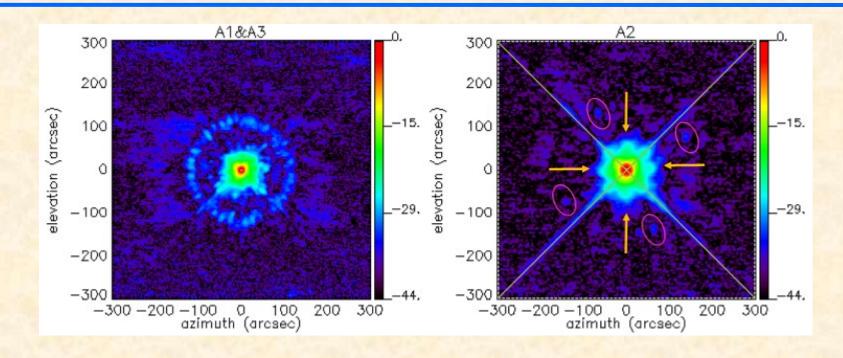
- Eliminate (hopefully) the « sub-bands correlation » problem
- Reduce (to be debated within the collaboration) the pixels size to improve a bit the angular resolution
- Improve the cosmetics by « exploding the resonances »

Among pixels size and cosmetics, the best trade-off will have to be found.

Refractive Optics (not optimal)

Known problem: NIKA2 employs big/thick plastic lenses

Silicon/Sapphire lenses and ideal AR coatings would in principle allow:1) Significant (really) improvement of the overall optical transmission2) Reduction of the background (for best observing conditions)


BUT

In practice this technology is not available, at least to our team, for such **big lenses** and to produce such an **ideal AR coating**.

<u>ALTERNATIVE</u>: we might have enough space in the NIKA2 Cryostat to design a purely reflective optics. Samuel ??

Telescope surface

« Telescope efficiency » = power in the main beam

55% at 260 GHz (reference beam 12.5' → 70% efficiency) 77% at 150 GHz (reference beam 12.5' → 85% efficiency)

 \rightarrow A 20-30% sensitivity penalty for the 260 GHz band

The NIKA2 team, Astronomy & Astrophysics 609, A115 (2018)

Cosmetics

Number of identified resonances $\rightarrow \sim 90\%$ (e.g. 94% for array 2) Number of pixels identified (with beams) in lab $\rightarrow \sim 90\%$ Number of pixels identified (with beams) at the telescope $\rightarrow 85-90\%$

Number of pixels used for maps after cosmetics cuts $\rightarrow \sim 70\%$

A fraction of the missing pixels might be saved by either:

1) Elaborating a procedure to « correct » the arrays (see S. Shu talk)

- 2) Further spacing the resonances (by-product of 1GHz electronics)
- 3) Producing/testing a number of arrays to pick up the best one

Mapping speed = Sensitivity budget

150GHz → 9 mJy·s^{0.5} → Great ! 260GHz → 30 mJy·s^{0.5} → Just acceptable, but WHY ?

How to explain the factor >3 difference ? Do we understand ?

Demonstrated penalties:

Dichroic $\approx 20\%$ Bandwidth $\approx 25\%$ (mainly in best conditions) Telescope $\approx 25\%$

Others more difficult to quantify (but favouring the 150 GHz):

- Background, refractive optics transmission, superconductivity ...

Prudent estimation: $30 \cdot 0.8 \cdot 0.75 \cdot 0.75 \approx 13 \text{ mJy} \cdot \text{s}^{0.5}$

$\rightarrow \underline{\text{NOTHING} \otimes \text{BIG} } \overline{\text{TO BE UNDERSTOOD}}$

Ideas for a "NIKA3" ?

New bands ?

Examples:

- Splitting the « 1mm window » into two colors
- Adding a « 3mm array »
- ... other ?

In any case:

ANY CHANGE MUST BE DRIVEN BY SCIENCE CASES
MUST NOT AFFECT THE POLARIMETRY CHANNEL
MUST NOT AFFECT THE 6.5arc-min FIELD-OF-VIEW
HAS TO TAKE INTO ACCOUNT NEW INSTRUMENTS
THAT WILL BE OPERATED SOON (e.g. LMT, APEX...)

Low-resolution spectroscopy ?

We have developed KISS (see A. Fasano talk), and are building CONCERTO (see G. Lagache talk) for the APEX 12-meters telescope

Transforming NIKA2 into a **spectral-imager** (low spectral resolution, 3-D imager) **MUST BE POSSIBLE**, mostly by radically redesigning the cabin optics. Minor changes (or no changes) to the cryostat.

Spectral resolution, e.g. $\mathbf{R} = \lambda / \Delta \lambda = 10 \div 50(100)$ Angular resolution \rightarrow preserving the NIKA2 one

May be better to wait the CONCERTO (on APEX) first results to see if it is promising on such a big telescope.

Conclusions

1) The 150 GHz channel is traditionally the best combination of optics/detectors/electronics/telescope/observing site

2) The 260 GHz channel is less performing (but we understand why)

Hardware actions:

- Optics: dichroic (Cardiff) → PRIORITY
- Arrays:

- Cosmetics (IRAM-Néel): ongoing
- Larger band (Néel): achieved, arrays available
- Electronics (LPSC) → FROM CONCERTO
- Telescope (IRAM)
- Study a purely reflective optics ??? (IRAM)

Software actions:

- Have a data analysis pipeline available to the external observers

Organisation:

- Exploiting the best observing conditions for continuum observations

