Impact of the mean pressure profile of galaxy clusters on tSZ cosmological constraints

Florian Ruppin

Observing the millimeter Universe with the NIKA2 camera

F. Mayet, J. F. Macías-Pérez, & L. Perotto (LPSC Grenoble)

Content

- I Cosmology from the tSZ power spectrum
- II Current status of tSZ cosmology
- III Mean pressure profile of the cluster population
- IV Analysis of the *Planck* tSZ power spectrum
- **V** Impact of a pressure profile modification on σ_8 and Ω_m

Content

- I Cosmology from the tSZ power spectrum
- II Current status of tSZ cosmology
- III Mean pressure profile of the cluster population
- IV Analysis of the *Planck* tSZ power spectrum
- **V** Impact of a pressure profile modification on σ_8 and Ω_m

Cosmology from the tSZ power spectrum

Hierarchical structure formation:

- · Little things collapse first, big things collapse later
- The Halo model: spherical collapse + virialization
- · Self-similar model: cluster properties given by gravitational physics

Halo mass function

Distribution of galaxy clusters:

- Mass function $\frac{d^2n}{dMdz}$ Number density of clusters per unit of mass and redshift
- · Large amplitude variations for different σ_8 and Ω_m values

Cosmology from the tSZ power spectrum

$$\text{- Power spectrum of the tSZ effect: } C_{\ell}^{\mathrm{tSZ}} = \int \frac{dV}{dz d\Omega} \, dz \int \frac{dn}{dM_{500}} \left| \frac{4\pi R_{500}}{\ell_{500}^2} \frac{\sigma_T}{m_e c^2} P_{500} I_{\mathcal{P}(\ell_{500})} \right|^2 \, dM_{500}$$

2D Fourier transform of the mean pressure profile

With
$$I_{\mathcal{P}(\ell_{500})} = \int x^2 \frac{\sin(\ell x/\ell_{500})}{\ell x/\ell_{500}} \mathcal{P}(x) dx$$

And $\mathcal{P}(x)$: the **mean pressure profile**

· Amplitude of the tSZ power spectrum depends on:

 σ_8 and Ω_m : amplitude of the mass function

Hubble parameter h: volume element

Hydrostatic bias b: included in the scaling parameter

Multipole ℓ

Content

- I Cosmology from the tSZ power spectrum
- II Current status of tSZ cosmology
- III Mean pressure profile of the cluster population
- IV Analysis of the *Planck* tSZ power spectrum
- **V** Impact of a pressure profile modification on σ_8 and Ω_m

Current status of tSZ cosmology

Tension between cosmological constraints from CMB and Planck cluster catalog for b=0.2

Option 1: Limit in the standard $\Lambda \mathrm{CDM}$ model

- Neutrino mass
- Modified gravity
- Etc.

Option 2: Bias and systematic effects

- Wrong estimate of hydrostatic bias
- \bullet Pressure profile and scaling relation at $z\gtrsim0.4$

1st Assumption: tension not due to limit in ΛCDM model

Current status of tSZ cosmology

Tension between cosmological constraints from CMB and Planck cluster catalog for b=0.2

Option 1: Limit in the standard $\Lambda \mathrm{CDM}$ model

- Neutrino macs
- Medined gravity
- Etc.

Option 2: Bias and systematic effects

- Wrong estimate of hydrostatic bias
- \bullet Pressure profile and scaling relation at $z\gtrsim0.4$

1st Assumption: tension not due to limit in ΛCDM model

Current status of tSZ cosmology

- Most recent analyses: take into account new Planck cosmology
 - take into account uncertainties on mass bias measurements
 - Tension between cosmological parameters is not significant

Joint analysis CMB+clusters $\longrightarrow b \sim 0.4$ in tension with values from observations+simulations

2nd Assumption: tension not fully due to wrong estimate of hydrostatic bias

Content

- I Cosmology from the tSZ power spectrum
- II Current status of tSZ cosmology
- III Mean pressure profile of the cluster population
- IV Analysis of the *Planck* tSZ power spectrum
- **V** Impact of a pressure profile modification on σ_8 and Ω_m

- 1 Previous results
- 2 Definition of extreme cases

1 - Previous results

2 - Definition of extreme cases

- $C_{\ell}^{\text{tSZ}} = \int \frac{dV}{dz d\Omega} dz \int \frac{dn}{dM_{500}} \left| \frac{4\pi R_{500}}{\ell_{500}^2} \frac{\sigma_T}{m_e c^2} P_{500} I_{\mathcal{P}(\ell_{500})} \right|^2 dM_{500}$
 - Mean pressure profile: amplitude of the tSZ power spectrum and shape at high ℓ
 - . Most widely used profiles: computed at high mass and low redshift $z\lesssim 0.4\,$

Potentially not representative of the cluster population

- Slight difference between outer slopes of Planck and REXCESS profiles
 - → ICM thermodynamics in **X** and **SZ**
- Redshift evolution:
 - relaxed VS disturbed cores/morphologies
- Importance of the intrinsic scatter:
 - selection function, distribution skewness

- $C_{\ell}^{\text{tSZ}} = \int \frac{dV}{dz d\Omega} dz \int \frac{dn}{dM_{500}} \left| \frac{4\pi R_{500}}{\ell_{500}^2} \frac{\sigma_T}{m_e c^2} P_{500} I_{\mathcal{P}(\ell_{500})} \right|^2 dM_{50}$
 - · Mean pressure profile: amplitude of the tSZ power spectrum and shape at high ℓ
 - * Most widely used profiles: computed at high mass and low redshift $z\lesssim 0.4\,$

Potentially not representative of the cluster population

- Slight difference between outer slopes of Planck and REXCESS profiles
 - → ICM thermodynamics in **X** and **SZ**
- · Redshift evolution:
 - relaxed VS disturbed cores/morphologies
- Importance of the intrinsic scatter:
 - selection function, distribution skewness

Mean normalized pressure profiles

- Observed redshift evolution of the mean pressure profile:
- In X-ray: ICM seems slightly cooler at high $\it z$ (McDonald et al., ApJ, 2014)
- In SZ: on-going NIKA2 SZ large program, 45 clusters at 0.5 < z < 0.9
- · Importance of the gas mass fraction:

Hydrostatic mass:
$$M_{HSE}(r) \propto \frac{r^2}{n_e(r)} imes \frac{d\,P_e(r)}{dr}$$
 ICM density

For a given cluster mass: less gas — less thermal pressure

Gas mass fraction profiles

Eckert et al., A&A, 2013 Eckert et al., A&A, 2019

Mean normalized pressure profiles

Eckert et al., A&A, 2013 Eckert et al., A&A, 2019

- Observed redshift evolution of the mean pressure profile:
 - In X-ray: ICM seems slightly cooler at high z (McDonald et al., ApJ, 2014)
 - In SZ: on-going NIKA2 SZ large program, 45 clusters at 0.5 < z < 0.9
- Importance of the gas mass fraction:

Hydrostatic mass:
$$M_{HSE}(r) \propto \frac{r^2}{n_e(r)} imes \frac{d\,P_e(r)}{dr}$$
 ICM density

For a given cluster mass: less gas — less thermal pressure

Gas mass fraction profiles

Mean normalized pressure profiles

- Observed redshift evolution of the mean pressure profile:
- In X-ray: ICM seems slightly cooler at high $\it z$ (McDonald et al., ApJ, 2014)
- In SZ: on-going NIKA2 SZ large program, 45 clusters at 0.5 < z < 0.9
- Importance of the gas mass fraction:

Hydrostatic mass:
$$M_{HSE}(r) \propto \frac{r^2}{n_e(r)} imes \frac{d\,P_e(r)}{dr}$$
 ICM density

For a given cluster mass: less gas — less thermal pressure

Gas mass fraction profiles

Eckert et al., A&A, 2013 Eckert et al., A&A, 2019

Mean normalized pressure profiles

Eckert et al., A&A, 2013 Eckert et al., A&A, 2019

- Observed redshift evolution of the mean pressure profile:
 - In X-ray: ICM seems slightly cooler at high z (McDonald et al., ApJ, 2014)
 - In SZ: on-going NIKA2 SZ large program, 45 clusters at 0.5 < z < 0.9
- Importance of the gas mass fraction:

Hydrostatic mass:
$$M_{HSE}(r) \propto \frac{r^2}{n_e(r)} imes \frac{d\,P_e(r)}{dr}$$
 ICM density

For a given cluster mass: less gas — less thermal pressure

Gas mass fraction profiles

1 - Previous results

2 - Definition of extreme cases

- Impact of gas mass fraction on mean pressure profile:
 - Similar distributions of clusters in $Y_{
 m tot}-z$ plane

 - Scale pressure profiles using same definition of $P_{500} \propto E_z^{8/3} M_{500}^{2/3+0.12}$

Similar distributions in Y_{tot} but different mean normalized pressure profiles

Mean normalized pressure profiles

Definition of three mean pressure profiles

- The mean pressure profile of the *Planck* collaboration Similar to the A10 profile used for cosmological analyses
- Two extreme cases given:
- The intrinsic scatter of the profile distributions at low \boldsymbol{z}
- Current constraints on the gas mass fraction profiles

Gas mass fraction profiles knowing z, M_{500} , and $\mathbb{P}(x)$:

- Assume NFW model for mass profile $M_{
 m tot}(r)$
- . Hydrostatic mass profile: $\begin{cases} M_{\rm HSE}(r) = (1-b) M_{\rm tot}(r) \\ b \in [0,0.4] \end{cases}$
- Density profile from HSE mass and pressure profile

Gas mass fraction: $f_{
m gas}(r) = M_{
m gas}(r)/M_{
m tot}(r)$

Associated gas mass fraction profiles

Content

- I Cosmology from the tSZ power spectrum
- II Current status of tSZ cosmology
- III Mean pressure profile of the cluster population
- IV Analysis of the *Planck* tSZ power spectrum
- **V** Impact of a pressure profile modification on σ_8 and Ω_m

Analysis of the Planck tSZ power spectrum

- Use angular power spectrum of the tSZ effect measured by *Planck Planck collaboration et al.*, A&A, 2016
- Power spectrum components:
 - tSZ power spectrum
 - Cosmic Infrared Background (CIB)
 Contaminants: { Radio and Infrared sources Spatially correlated noise

Fit *Planck* power spectrum for $\ell < 1000$

Analysis of the *Planck* tSZ power spectrum

Content

- I Cosmology from the tSZ power spectrum
- II Current status of tSZ cosmology
- III Mean pressure profile of the cluster population
- IV Analysis of the *Planck* tSZ power spectrum
- **V** Impact of a pressure profile modification on σ_8 and Ω_m

Impact of the pressure profile on tSZ cosmology

- · Cosmological constraints: significant differences for the three mean pressure profiles
- · Estimates obtained with \mathbb{P}_m profile compatible with previous constraints
- $oldsymbol{\cdot}$ CMB constraints enclosed between the ones obtained with \mathbb{P}_m and \mathbb{P}_l profiles

Cosmological tension can be solved with mean pressure profile variations

Impact of the pressure profile on tSZ cosmology

- Prior on: $\begin{cases} -b \text{ Lensing VS X-ray/SZ mass} \longrightarrow b = 0.2 \pm 0.08 \\ -\Omega_m \text{ Baryon acoustic oscillations (BAO)} \longrightarrow \Omega_m = 0.3 \pm 0.05 \end{cases}$
- · Cosmological constraints on σ_8 and Ω_m

No significant tension between CMB and tSZ PS constraints with \mathbb{P}_m

Possible future?

Prior on hydrostatic bias $b=0.2\pm0.01$ Better lensing mass estimates with e.g. Euclide

Tension with current CMB constraints

15% decrease of mean pressure profile → tension canceled

- If everything is taken into account: no cosmological tension BUT issue with hydrostatic bias value
 - → Need to explore other sources of bias in tSZ cosmological analyses
- Mild indications of redshift evolution of ICM profiles
 - → Wrong calibration of mean normalized pressure profile = potential source of bias
- New analysis of *Planck* tSZ power spectrum using extreme cases for mean pressure profile
 - → Significant impact of mean pressure profile modification on cosmological constraints

- Need to estimate cluster thermodynamic properties at high z X-ray/SZ analyses

- If everything is taken into account: no cosmological tension BUT issue with hydrostatic bias value
 - → Need to explore other sources of bias in tSZ cosmological analyses
- Mild indications of redshift evolution of ICM profiles
 - → Wrong calibration of mean normalized pressure profile = potential source of bias
- New analysis of *Planck* tSZ power spectrum using extreme cases for mean pressure profile
 - → Significant impact of mean pressure profile modification on cosmological constraints

- Need to estimate cluster thermodynamic properties at high z X-ray/SZ analyses

- If everything is taken into account: no cosmological tension BUT issue with hydrostatic bias value
 - → Need to explore other sources of bias in tSZ cosmological analyses
- Mild indications of redshift evolution of ICM profiles
 - → Wrong calibration of mean normalized pressure profile = potential source of bias
- New analysis of *Planck* tSZ power spectrum using extreme cases for mean pressure profile
 - → Significant impact of mean pressure profile modification on cosmological constraints

- Need to estimate cluster thermodynamic properties at high z X-ray/SZ analyses

- If everything is taken into account: no cosmological tension BUT issue with hydrostatic bias value
 - → Need to explore other sources of bias in tSZ cosmological analyses
- Mild indications of redshift evolution of ICM profiles
 - → Wrong calibration of mean normalized pressure profile = potential source of bias
- New analysis of *Planck* tSZ power spectrum using extreme cases for mean pressure profile
 - → Significant impact of mean pressure profile modification on cosmological constraints

- Need to estimate cluster thermodynamic properties at high z X-ray/SZ analyses

- If everything is taken into account: no cosmological tension BUT issue with hydrostatic bias value
 - → Need to explore other sources of bias in tSZ cosmological analyses
- Mild indications of redshift evolution of ICM profiles
 - → Wrong calibration of mean normalized pressure profile = potential source of bias
- New analysis of Planck tSZ power spectrum using extreme cases for mean pressure profile
 - → Significant impact of mean pressure profile modification on cosmological constraints

- Need to estimate cluster thermodynamic properties at high z X-ray/SZ analyses

Thank you

