

Low-resolution spectroscopic surveys with CONCERTO* at APEX

G. Lagache

Laboratoire d'Astrophysique de Marseille

Cosmic dawn and the Epoch of Reionization

From recombination to reionisation ... a very brief history of the Universe

Cosmic dawn and the Epoch of Reionization

From recombination to reionisation ... a very brief history of the Universe

* Redshifts z~4-10 :

* An important epoch when the ISM in typical galaxies matures from a nearly primordial, dust-free state at z~8 to the dust- and metallicity-enriched state observed at z~4.

« IR » = 1- 1000 μm / 300 THz – 300 GHz

 $L_{IR} > 10^{11} \text{ Lsol}$

 $SFR_{IR} > 10 Msol/yr$

Observing the dusty star formation at z>4

You need (sub-)mm experiments !

Observing the dusty data formation at z>4

In the (sub-)millimeter, galaxies are so faint and numerous, compared to the angular resolution achievable, that confusion plagues observations substantially.

Individual galaxies

SPIRE/Herschel @ 500 microns:	35"
Laboca/APEX @ 850 microns:	18"
NIKA2/30m @ 1.2 mm:	11"
HST visible:	0.1"

CIB is resolved at ~6% Intensity Mapping (CIB fluctuations)

Intensity mapping: basic idea

Measuring the large-scale fluctuations in the emission from a large number of unresolved sources

Intensity mapping: basic idea

Intensity mapping (confusion-limited surveys)

Intensity mapping:

- measure angular fluctuations in the brightness of the sky at a particular frequency

- naturally sensitive to the radiation from faint sources and from the diffuse intergalactic medium

- basic tool : angular power spectrum; intensity fluctuations are used to reconstruct the power spectrum of matter fluctuations

• Retain redshift information

=> δv =1.5 GHz corresponds to δz =0.05 for [CII] at z=7

 Unique large-scale view, complementing instruments as JWST or ALMA restricted by relatively small fields of view

CII Line intensity mapping

- One of the brightest emission lines in the spectra of galaxies
- 158 microns rest-fame => Redshifted into the sub-mm and mm atmospheric windows for 4.5<z<9
 - APEX/FLASH , ALMA, NOEMA, detect [CII] at very high redshift, pointing on known objects
 - ~40 star-forming galaxies at 4.5<z<8 (LBGs and SMGs)
 - 13 blind detections at z>6 from ASPEC/ALMA
- Extinction free tracer of star formation
- One of the most valuable tracers of dusty star formation at high redshift

=> 3D intensity mapping of the CII line

-1000

1000

CII at high redshift: a good tracer of SFR?

Low-metallicity dwarf galaxies **Different galaxy populations** 2 6 disp: 0.42 dex DL2011 Dwarf galaxies S2012 * HII/starburst SFR_(FUV+24) [M_{sun} yr⁻¹] 4 △ LINER/Seyfert log SFR_{ref} [M_{sun} yr⁻¹] disp: 0.38 (0.40) dex + ULIRG □ high-z 0 ← high-z upper limit 2 0 All -2 Dwar бo 7.14 7.77 8.40 2 6 8 10 4 10 12 2 Δ 6 8 $\log L_{[CII]} [L_{sun}]$ $\log L_{[CII]} \left[L_{sun} \right]$

Caveat: SFR not homogeneously determined

CII at high redshift: a good tracer of SFR?

Lagache, Cousin, Chatzikos, 2018

Understanding the dusty star formation in the early Universe and characterizing the EoR

CONCERTO A [CII] line intensity mapping experiment

CONCERTO: instrument

Focal plane:

- Kinetic Inductance Detectors (KID)
- * Success of the NIKA2 IRAM camera
- * FOV D=20', f λ sampling => arrays of 2,168 pixels
- Cryostat:
 - Closed-circle ³He-⁴He dilution 150mK

- The 4K stage (required for initiating the ³He-⁴He dilution) is achieved using a standard two-stages pulse-tube
- * Martin-Puplet interferometer (like a Michelson interferometer but with a movable mirror)
 - * Outside the cryostat
 - * Spectral resolution δv constant => R= $v/\delta v$ = 100 to 300
 - * Perform continuously path interferograms at a frequency of few Hertz or more
 - * At least one spectrum for all pixels of the matrix every second (Huge data rate!)
- * A « sub-mm » antenna:
 - * Frequency range: 120 360 GHz
 - * APEX telescope (D=12m beam size ~20" at z=5, ~30" at z=8)

CONCERTO @ APEX

Very, very dry, at an altitude of 5100 m

CONCERTO: project status

- KISS installation (Dec-Feb 2019) and on-going observations
 - See Alessandro's talk
- Preliminary Design Review successful (Feb. 2019)
- End of March 2019: ESO proposal (600 hours)
 - OPC in May 2019
- APEX board (May 2019): Agreement to remove LABOCA to install CONCERTO
- May 2019: CONCERTO got the ANO2 labellisation
- Critical Review Design planned for Oct 2019
- Installation at APEX: Jan 2021
- A lot of activities!...

Our "baby love" cryostat

CONCERTO @ APEX

CONCERTO: ... a lot of people

- * Pls: G. Lagache & A. Monfardini
- Instrument
 - Institut Néel: E. Barria, A. Benoit, G. Bres, M. Calvo, P. Camus, G. Donnier-Valentin, O. Exshaw, A. Fasano, G. Garde, A. Gerardin, J. Goupy, M. Heigeas, P. Jeantet, J.-P. Leggeri, F. Levy-Bertrand, E. Roy, O. Tissot
 - * LPSC: J.-L. Bouly, J. Bounmy, O. Bourrion, A. Catalano, C. Hoarau, J. Macias-Perez, M. Marton, N. Ponchant, S. Roni, S. Roudier, D. Tourres

* Pipeline and instrument model

- * LPSC: A. Catalano, J. Macias-Perez, J. Marpaud
- * IPAG: N. Ponthieu, F.-X. Désert
- * LAM: A. Beelen, Y. Cao, J.-C. Lambert

* Scientific preparation

- * LAM: A. Beelen, M. Béthermin
- * ESO: C. De Breuck

* APEX

* ESO: C. De Breuck + Staff at the telescope

* Administration

- * LAM: L. Todorov
- * Institut Néel: C.Bartoli, P. Poirier
- * LPSC: C. Vannier

CONCERTO: predictions

CONCERTO: what is expected to be learned?

- Answer the questions of whether dusty star-formation contributes to early galaxy evolution, and whether dusty galaxies play an important role in shaping cosmic reionization
 - DSFG are critical players in the assembly of stellar mass and the evolution of massive galaxies at high redshift
- Clustering power spectra
 - «Dusty» SFRD for z>4.5
 - * [CII] luminosity- Mh relation
 - Typical halo mass scale of SF galaxies
- Shot noise
 - Measure the weighted dark-matter halo mass integral of the [CII] luminosity function
 - Constrain number counts of [CII]-emitters as a function of redshift.

Cross-correlations

With NII/OI (Serra+2016), with galaxy surveys, with CIB anisotropies, etc

With HI (Dumitru+2019)

Intensity mapping of CO at low redshift

* CO emission at z < 1.9 (for the rotational levels up to J=5):

erc

- Cross-power spectrum of two CO lines at the same redshift, within CONCERTO: A measure of the 3D clustering of undetected galaxies.
- Cross-correlating our CO signal with z~0.5-2 galaxies will also probe the molecular gas and its connection to star formation in galaxies.

CONCERTO: CO contamination

1.4x1.4 degrees CONCERTO simulated sky maps at $z=5.5\pm0.1$

A foreground for CII at z=6 : CO(5-4) at z=[1.1-1.2]

Estimated using cross-correlations of CONCERTO maps at the frequencies of the CO(4-3), CO(5-4) and CO(6-5) lines.

- Our goal is to offer a generic access to a large FoV and low-frequency resolution spectroscopic instrument.
- Next step after ground-based sub-mm experiments, Herschel and Planck: from broad-band photometry to spectroscopy
- A multi-purpose instrument:
 - Galaxy clusters: SZ and gravitationally lensed high-redshift galaxies
 - Local and high-redshift galaxies
 - Star-forming regions and high-latitude cirrus clouds in the MW
 - Solar system planets

- Kinetic and Thermal Sunyaev-Zel'dovich Effect
- The kSZ effect, due to the motion of a galaxy cluster with respect to the CMB, provides a direct, redshift-independent measurement of the velocity field of galaxy clusters
- The tSZ is proportional to the integrated line of sight electron pressure => mass proxy in cosmological studies

- CONCERTO will enable an accurate separation of the tSZ, kSZ and relativistic corrections, as well as the extraction of the SZ signals from the other astrophysical components
- FOV well adapted for medium to high-z clusters
 & angular resolution matters (sub-structures, mergers)

SZ and distant galaxies at the same time!

* Longer wavelength probes to higher redshift

Galaxies at (very-)high redshift

- Follow up of Herschel/Laboca/ SCUBA-2 deep surveys and SPT/ACT deep fields
 - Constrain SEDs
 - Redshift identification through lines
 - * At z=2:
 - * CO from J4-3 to J9-8
 - * SLED!
 - * CI (370 and 610 microns)
 - * At z=7, CII

- * CO lines
 - Molecular gas reservoir
 - at z=0: J2-1, J3-2, at z=1: J3-2, J4-3, J5-4, J6-5, Cl

- * Continuum (complementary to Herschel and LABOCA)
 - Dust (gas) mass (Scoville et al. 2016)
 - Probe the sub-mm excess (e.g. in SMC and LMC, Bot et al. 2010)
 - Follow-up of the Herschel Dwarf Galaxy survey
 - * How dust properties evolve as a function of metal enrichment?

ESA/Herschel/PACS & SPIRE Consortium, O. Krause, HSC, H. Linz.

Ed Lubats

Galactic star-forming regions and high-latitude cirrus

- Dust emissivity, dust mass, dust temperature (combining with Herschel)
- Changes in dust properties related to early star formation
 - Ex: evolutionary stages of massive clumps from the youngest to the most evolved high-mass-star forming clumps (e.g., König+2017)
- Distribution of cold dust (e.g. Csengeri+2016)
- * CONCERTO: dust continuum but also CO(2-1) and CO(3-2)
 - Evolution of the gas-to-dust ratio

erc

CO(3-2) contamination to 870 µm broad-band surveys

Herschel's view of the W3/W4/W5 complex. Credit: ESA/Herschel/NASA/JPL-Caltech, CC BY-SA 3.0 IGO; Acknowledgement: R. Hurt (JPL-Caltech)

CONCLUSIONS

- * We are constructing a low-resolution ($\delta v = 1.5$ GHz) large FOV spectrometer operating between 120 and 360 GHz.
- Our main interest: map in 3D the specific intensity due to CII-line emission, a technique known as « Intensity Mapping »
 - With the CII-dedicated CONCERTO survey, we will map the star formation at z>4.5, and in the end of epoch of reionisation
- CONCERTO @ APEX is a unique combination and will allow to :
 - study galaxy cluster physics
 - probe the gaz content of galaxies (CO, CI, CII, NII, OI lines), the efficiency of star formation
 - measure the dust mass and emissivity
 - study the structure of molecular clouds