

GASTON: The NIKA2 Galactic Star formation Large Programme Dust properties and star formation at the extremes

Nicolas Peretto & Andrew Rigby (Cardiff University, UK)

Ph. André (CEA Saclay), A. Bacmann (IPAG Grenoble) and the NIKA2 consortium

The mm Universe @ NIKA2 conference – Grenoble – 3rd – 7th of June 2019

A schematic view of the Initial Mass Function of stellar objects

Do different stellar mass regimes correspond to different "modes" of star formation?

Peak of the CMF/IMF is probably determined by gravo-turbulent fragmentation of critical filaments whose typical Jeans mass is 1M_{sun} (André+ 2010, 2014)

The massive star forming infrared dark cloud SDC335

Very massive cores/stars form at the centre of rapidly globally collapsing cloud (e.g. Peretto+2006,2013; Schneider+2010; Wang+2010; Motte+2017).

-> Massive stars are clump-fed ,while low-mass stars are core-fed

Dust properties are important in many aspects, but dust properties vary

Understanding how dust properties change as a function of environment is important in itself but also as a surrogate mass tracer of H₂

Steinacker et al. (2010)

The GASTON large programme: Goals

<u>GASTON</u>: Exploiting the high-sensitivity and fast mapping capability of NIKA2 to identify large populations of low-brightness sources in galactic star forming-regions and constrain three key star-formation-related questions.

Goal #1: Constrain the dominant mode of brown-dwarf formation

Goal #2: Constrain the transition from core-fed to clump-fed star formation

Goal #3: Constrain dust properties from A_v =3 to A_v > 100

The GASTON large programme: Survey design

<u>Summary of proposed observations:</u>

	Fields	area	$\sigma_{1.2mm}$	σ_{2mm}	elevation	f_{filter}	time	d
		$(arcmin^2)$	(mJy/beam)	(mJy/beam)	(deg)	-	(h)	(kpc)
High-mass	l24	8,640	1.5	0.93	40	1	70.3	3 to 5
Pre-brown	L1688	380	0.54	0.30	25	1	34.6	0.14
dwarf	Taurus	530	0.54	0.30	45	1	41.4	0.14
Dust prop	L1689B	65	0.20^{2}	0.17^{2}	25	2	23.7	0.14
	L1521E	65	0.15^{2}	0.14^{2}	45	2	30.0	0.14

<u>Summary of GASTON's current status (25% complete):</u>

Fields	Time (h)	$\sigma_{ m 1.2mm}$ (mJy/beam)	$\sigma_{ m 1.2mm}$ (mJy/beam)
124	35	3.7	1.2
L1688	6	1.8	0.7
Taurus	0		
L1689B	10		
L1521E	0		-

GASTON: Galactic Plane Mapping Strategy

GASTON: First 1.2mm and 2mm maps of the I24 field

GASTON: Comparison with other Galactic plane surveys

GASTON: Calibration check against BGPS (Aguirre+2011)

Bolocam Galactic Plane Survey at 1.1mm against GASTON at 1.15mm in fixed apertures

(resolution and colour correction taken into account)

GASTON: Calibration check against BGPS (Aguirre+2011)

Integrated flux and peak flux density agree within 20% Possible reason: extended- versus point-source emission calibration

GASTON: Compact sources identification

Filtering at 60" + dendrogram of what is left: Compact sources are the leaves

Galactic Longitude

GASTON: Compact sources flux distributions

In total: 1615 compact sources – 940 with no HiGAL BM sources – 413 with no 250µm sources

As expected, GASTON identifies a new population of low brightness sources

Infrared darkness of GASTON sources

Examples of IR darkness in GASTON

Dust temperatures of GASTON sources

Expected evolution of dust temperatures as a function of infrared darkness fractions

Distances of GASTON sources

Mass distribution of GASTON sources

New population of sources (orange) has similar mass distribution compared to the global population: New cold massive sources identified!

Mass distribution of GASTON sources

Mass distributions as a function of infrared darkness fractions

Distributions seem to evolve from IR dark (stepper) to IR bright (shallower) but needs more work to confirm

GASTON: Plans for the l24 field

- More work is needed to confirm the results presented here on the mass distribution evolution, but will be the focus of a first GASTON paper

- A catalogue of GASTON sources and reduced images (and accompanying paper) will be released once all data has been taken

- Possible other science papers:
 - Variation of dust properties as a function of Galactic radius
 - Variability of protostellar sources
 - Detailed multi-wavelength characterisation of dense cores
 - High-resolution follow up observations (NOEMA ALMA) of the new population of sources

GASTON: comparison IDL pipeline - Scanamorphos

,

2