

UNIVERSITÉ DE GENÈVE

FACULTÉ DES SCIENCES Département d'astronomie

The XMM Cluster Outskirts Project (X-COP)

Dominique Eckert

Department of Astronomy, University of Geneva

Main collaborators: V. Ghirardini, S. Ettori, E. Pointecouteau, S. Molendi, S. De Grandi, E. Rasia, F. Vazza, H. Bourdin, P. Mazzotta, ...

June 3, 2019

Most current studies focus on the region inside R_{500}

Vazza et al. 2010

... But a wide range of interesting phenomena take place beyond that radius

ICM entropy generation

Non-thermal pressure Turbulence, shocks, cosmic rays, ...

ICM entropy generation

Non-thermal pressure Turbulence, shocks, cosmic rays, ...

Infalling substructures Bulk motions

D. Eckert

Gas entropy $K = kTn_e^{-2/3}$ encodes the formation history of the ICM

Gas entropy $K = kTn_e^{-2/3}$ encodes the formation history of the ICM

Deviations from baseline trace non-gravitational processes

Gas entropy $K = kTn_e^{-2/3}$ encodes the formation history of the ICM

Deviations from baseline trace non-gravitational processes

Gas entropy $K = kTn_e^{-2/3}$ encodes the formation history of the ICM

Deviations from baseline trace non-gravitational processes

A universal entropy flattening?

- Thanks to its low background Suzaku measured entropy profiles out to R_{vir} in a few clusters
- A deficit of entropy is often observed beyond *R*₅₀₀
- Possible interpretations: gas clumping, non-thermal pressure support, non-equilibrium electrons, ...

Walker et al. 2013

The X-COP strategy

X-ray

$$\epsilon_x \sim \int n_e^2 T^{1/2} dl$$

Sunyaev-Zel'dovich
$$y \sim \int P_e dl$$

The X-COP strategy

XMM has a large FOV and collecting area... but also a high and variable background

The X-COP strategy

XMM has a large FOV and collecting area... but also a high and variable background

In the [0.7-1.2] keV band we reach an accuracy of $\sim 3\%$ on the subtraction of the XMM background

The X-COP project

X-COP (PI: Eckert) is a very large program on XMM to follow up Planck clusters with the highest S/N $\,$

D. Eckert

Grenoble 2019

Gas clumping

At large radii the gas distribution is clumpy and inhomogeneous

Gas clumping

At large radii the gas distribution is clumpy and inhomogeneous

X-ray and SZ profiles

Our profiles extend to $1.8R_{500}$ (*n*), $2.3R_{500}$ (P), and $0.9R_{500}$ (T)

D. Eckert

Grenoble 2019

Mass profiles

We reconstruct M_{HSE} by fitting jointly X-ray and SZ data

Ettori, DE et al. 2019

Our mass profiles can be used for

- Self-similar scaling
- Testing hydrostatic equilibrium
- Mass distribution

Entropy profiles

Ghirardini, DE et al. 2019

Except for one cluster (A2319) all clusters are consistent with gravitational heating once corrected for clumping

Entropy profiles

Ghirardini, DE et al. 2019

Slope beyond R_{500} of 1.25 ± 0.23 fitted over > 30 data points

Effective polytropic index

Ghirardini et al. in press

Beyond $R \sim 0.3 R_{500}$ (i.e. outside the cooling region) Γ is constant at ~ 1.2 ; Agreement with predictions for ICM in hydrostatic equilibrium in NFW potential (Capelo et al. 2012)

Scatter in thermodynamic profiles

In the range $[0.2 - 0.8]R_{500}$ the cluster population behaves self-similarly

Scatter in thermodynamic profiles

Cooling, AGN feedback and merger state have a large impact on cluster cores

Scatter in thermodynamic profiles

Beyond $\sim R_{500}$ accretion from the environment matters

Testing hydrostatic equilibrium with f_{gas}

Eckert et al. 2019

Median [percentiles] for the full sample:

- $f_{gas,500} = 0.141 [0.131, 0.154]$
- $f_{gas,200} = 0.149 [0.121, 0.161]$

Universal gas fraction

Comparison between 13 codes (Sembolini et al. 2016a,b) Non-radiative Radiative/AGN

The baryon fraction should be close to the cosmic value

Universal gas fraction

We used a large set of \sim 300 simulated clusters (Rasia et al. in prep.) to determine the baryon depletion

Universal gas fraction

We used a large set of \sim 300 simulated clusters (Rasia et al. in prep.) to determine the baryon depletion

- The value of Y_{bar} is nearly independent of the adopted baryonic physics (Planelles et al. 2014)
- Considering the (well-measured) stellar fraction, we set $f_{gas} = Y_b \frac{\Omega_b}{\Omega_m} f_{\star}$

Non-thermal pressure support

 In the presence of non-thermal pressure the HSE equation becomes

$$\frac{d}{dr}(P_T + P_{NT}) = -\rho \frac{GM}{r^2}$$

- We assume a parametric form for $P_{NT}/P_T(r)$ and solve for the parameters assuming universal f_{gas}
- Scatter and uncertainties in universal f_{gas} are propagated to NT pressure

Nelson et al. 2014

Non-thermal pressure support vs simulations

Eckert et al. 2019

With one exception (A2319) the level of NT pressure is *lower* than predicted Median $P_{NT,500} = 6\%$, $P_{NT,200} = 10\%$

The case of A2319

A2319 is a head-on merger with 3:1 mass ratio

Ghirardini, Ettori, DE et al. 2018

The case of A2319

A2319 is a head-on merger with 3:1 mass ratio

Ghirardini, Ettori, DE et al. 2018

A2319 is probably in a transient phase of high NT pressure (\sim 40%)

Non-thermal pressure and hydrostatic bias

We compared our masses corrected for NT pressure with hydrostatic masses

Eckert et al. 2019

- On average we measure $M_{HSE}/M_{tot} = 0.94 \pm 0.04$
- *Planck* masses are slightly biased low, $M_{SZ}/M_{tot} = 0.85 \pm 0.05$
- $1-b=0.58\pm0.04$ would imply a very low $f_{gas}=10.5\%$

A low hydrostatic bias?

NT pressure in simulations is usually calculated as $P_{NT} = \frac{1}{3}\rho \sigma_{gas}^2$

Vazza, DE et al. 2018

A low hydrostatic bias?

NT pressure in simulations is usually calculated as $P_{NT} = \frac{1}{3}\rho \sigma_{gas}^2$

Vazza, DE et al. 2018

The velocity distribution in spherical shells has a tail extending towards **negative values**

Combining Chandra/XMM data with NIKA-2 we can use the X/SZ method out to high redshift

Ruppin et al. 2018

Adam et al. 2018

The future: the eROSITA all-sky survey

eROSITA is the next-generation X-ray survey instrument

eROSITA will detect 100,000 clusters out to $z \sim 1.5!$ Synergies with SZ instruments are obvious

Take home message

D. Eckert

Grenoble 2019