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The outskirts of galaxy clusters

They “mark the transition from the cosmic web to the ICM” (Avestruz et al., 2016).

Radial range of interest: R500 < r < 3R200 ≈ 3Rvir

Outskirts dynamicsOutskirts dynamicsOutskirts dynamicsOutskirts dynamicsOutskirts dynamicsOutskirts dynamicsOutskirts dynamicsOutskirts dynamicsOutskirts dynamicsOutskirts dynamicsOutskirts dynamicsOutskirts dynamicsOutskirts dynamicsOutskirts dynamicsOutskirts dynamicsOutskirts dynamicsOutskirts dynamics
Accretion and gravity-driven processes that lead to:
I inhomogeneities in the ICM (substructures, clumps)
I shocks injecting turbulence
I filaments or bridges connecting objects

(see e.g. Vazza et al., 2013; Roncarelli et al., 2013; Reiprich et al., 2013; Avestruz et
al., 2015; Walker et al., 2019)

lllllllllllllllll

biases in the thermodynamic profiles and in the inferred cosmological quantities
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The XMM Cluster Outskirts Project

PurposePurposePurposePurposePurposePurposePurposePurposePurposePurposePurposePurposePurposePurposePurposePurposePurpose
Study of the properties of galaxy cluster outskirts exploiting the synergy between
X-ray and Sunyaev–Zel’dovich data (Eckert et al., 2017)

Data setData setData setData setData setData setData setData setData setData setData setData setData setData setData setData setData set
Twelve massive galaxy clusters observed by Planck and XMM-Newton.
Selection criteria:
I significant Planck detection: SNR > 12
I low redshift: 0.04 < z < 0.10
I objects well resolved by Planck: θ500 > 10 arcmin

Significant updateSignificant updateSignificant updateSignificant updateSignificant updateSignificant updateSignificant updateSignificant updateSignificant updateSignificant updateSignificant updateSignificant updateSignificant updateSignificant updateSignificant updateSignificant updateSignificant update

In this work we make use of the Planck 2018 data release (PR3)
(available at https://pla.esac.esa.int)
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Planck data
Planck data for cluster science are collected by the High Frequency Instrument
(HFI) (Planck Collaboration et al., 2014; Planck Collaboration et al., 2018)
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Raw maps from PR3 centred on cluster A2142
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Thermal Sunyaev–Zel’dovich effect

Spectral distortion of the cosmic microwave background from inverse Compton
scattering with the free electrons in the ICM (Sunyaev & Zel’dovich, 1970).

Shift for x = kBTCMB
mec2 � 1 (Kompaneets, 1957):

∆TtSZ
TCMB

= f (x) y ∆ItSZ
ICMB

= g(x) y

For a thermal population of electrons: :::::::::::::::::

Definition of the Compton y parameter:

y = σT
mec2

∫
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. . . direct probe of the ICM pressure along the line of sight
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Cluster imaging with the tSZ effect

The problem of component separationThe problem of component separationThe problem of component separationThe problem of component separationThe problem of component separationThe problem of component separationThe problem of component separationThe problem of component separationThe problem of component separationThe problem of component separationThe problem of component separationThe problem of component separationThe problem of component separationThe problem of component separationThe problem of component separationThe problem of component separationThe problem of component separation
Different methods used in mm astronomy, e.g.:
I internal linear combination methods;
I blind or semi-blind methods based on spatial modelling;
I parametric methods
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Cluster imaging with the tSZ effect

The problem of component separationThe problem of component separationThe problem of component separationThe problem of component separationThe problem of component separationThe problem of component separationThe problem of component separationThe problem of component separationThe problem of component separationThe problem of component separationThe problem of component separationThe problem of component separationThe problem of component separationThe problem of component separationThe problem of component separationThe problem of component separationThe problem of component separation
Different methods used in mm astronomy, e.g.:
I internal linear combination methods;
I blind or semi-blind methods based on spatial modelling;
I parametric methods

Our spectral imagingOur spectral imagingOur spectral imagingOur spectral imagingOur spectral imagingOur spectral imagingOur spectral imagingOur spectral imagingOur spectral imagingOur spectral imagingOur spectral imagingOur spectral imagingOur spectral imagingOur spectral imagingOur spectral imagingOur spectral imagingOur spectral imaging
We propose an improved version of the algorithm presented in Bourdin et al.
(2015) (B15), applied for the first time to Planck 2018 data.

It aims at combining:
I the robustness of parametric component separation
I the advantages offered by sparse representations to map localized features

(use of wavelet and curvelet transforms)
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Basics of B15 algorithm: the parametric way
Temperature anisotropies in HFI data can be modelled at each frequency ν as:

M(ν, k; s) =
Ns∑
i

fi (ν) si (k) + η(ν, k)

k: generic pixel in the maps.

Ingredients of the model mapsIngredients of the model mapsIngredients of the model mapsIngredients of the model mapsIngredients of the model mapsIngredients of the model mapsIngredients of the model mapsIngredients of the model mapsIngredients of the model mapsIngredients of the model mapsIngredients of the model mapsIngredients of the model mapsIngredients of the model mapsIngredients of the model mapsIngredients of the model mapsIngredients of the model mapsIngredients of the model maps
I fi : spectral energy density
I si : signal from each component
I Ns : total number of components
I η: instrumental noise

Only three dominating sources: CMB,
Galactic thermal dust and tSZ

(Planck Collaboration et al., 2016)
The component maps are estimated from a chi-square minimization.
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The component maps are estimated from a chi-square minimization.
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Basics of B15 algorithm: the sparse way
We introduce sparsity in the chi-square by implementing a wavelet decomposition
of the residuals between the data, DHFI, and the model M:

res(ν, k; s) = DHFI(ν, k)−M(ν, k; s)

Their wavelet transform is (e.g. Mallat, 2008):

resΨ(ν, k; s) =
Npix∑

n
aj0,n(ν; s) Φj0,n(k) +

Nscales∑
j=j0

Npix∑
n

aj,n(ν; s) Ψj,n(k)
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Basics of B15 algorithm: the sparse way
We introduce sparsity in the chi-square by implementing a wavelet decomposition
of the residuals between the data, DHFI, and the model M:

res(ν, k; s) = DHFI(ν, k)−M(ν, k; s)

Their wavelet transform is (e.g. Mallat, 2008):

resΨ(ν, k; s) =
Npix∑

n
aj0,n(ν; s) Φj0,n(k) +

Nscales∑
j=j0

Npix∑
n

aj,n(ν; s) Ψj,n(k)

approximation coefficients: detail coefficients:

aj0,n(ν; s) =
Npix∑
m

res(ν,m; s) Φ∗
j0,n(m) aj,n(ν; s) =

Npix∑
m

res(ν,m; s) Ψ∗
j,n(m)

Φ: dual scaling function of Ψ at the scale j0 Ψ: B3 spline wavelet
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Basics of B15 algorithm: the sparse way
In order to ensure positivity and unity normalization, the kernel (and its dual) are
split into its positive and negative components:

And the best-fit source component maps are estimated by:

ŝ = 1
2

[
argmin

s
(χ2

Ψ+
)− argmin

s
(χ2

Ψ−
)
]

being the weighted chi-squares:

χ2
Ψ±

=
Nν∑
ν

Npix∑
k

res2
Ψ±

(k, ν; s)
σ2

HFI(k, ν)
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Enhancement of B15 algorithm: new deconvolution
The new deconvolution is applied directly to the wavelet coefficients of the
residuals, which we rewrite as:

aj,n(ν; ∆s) =
Npix∑
m
{DHFI(ν, k)− B(ν)⊗ [HM(ν,m; s̃ + ∆s) +

+ (1− H)M(ν,m; s̃ −∆s)]} Ψ∗
j,n(m)

B(ν): instrumental beam; H: Heaviside step function; s = s̃ ±∆s
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Overall enhancement of B15 algorithm
Improvements and new featuresImprovements and new featuresImprovements and new featuresImprovements and new featuresImprovements and new featuresImprovements and new featuresImprovements and new featuresImprovements and new featuresImprovements and new featuresImprovements and new featuresImprovements and new featuresImprovements and new featuresImprovements and new featuresImprovements and new featuresImprovements and new featuresImprovements and new featuresImprovements and new features

Major change to improve the performance and the stability of the algorithm:

I the former iterative deconvolution has been replaced with the new wavelet
coefficient-wise deconvolution shown before

Adaptation to real cluster observations:

I an updated model of thermal dust ::::::::::::::::: two grey bodies as in Meisner &
Finkbeiner (2015):

ftd(ν) = f1
q1
q2

(
ν

ν0

)β1
B(ν; T1) + (1 − f1)

(
ν

ν0

)β2
B(ν; T2)

I removal of residual contamination from:

I dust ::::::::::::::::: 857 GHz channel not used in the approximation coefficients
I bright point sources ::::::::::::::::: masking with the Planck Catalogue of Compact

Sources (Planck Collaboration et al., 2014, 2016)

(Baldi et al., to be submitted)
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TSZ maps of the X-COP clusters
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A2029: tSZ + X-ray (ROSAT/PSPC)

cyan cross: cluster A2033
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RXC1825: tSZ + X-ray (XMM-Newton)

cyan cross: cluster CIZA1824
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Additional step: error estimate
Bootstrap technique to get mock HFI dataBootstrap technique to get mock HFI dataBootstrap technique to get mock HFI dataBootstrap technique to get mock HFI dataBootstrap technique to get mock HFI dataBootstrap technique to get mock HFI dataBootstrap technique to get mock HFI dataBootstrap technique to get mock HFI dataBootstrap technique to get mock HFI dataBootstrap technique to get mock HFI dataBootstrap technique to get mock HFI dataBootstrap technique to get mock HFI dataBootstrap technique to get mock HFI dataBootstrap technique to get mock HFI dataBootstrap technique to get mock HFI dataBootstrap technique to get mock HFI dataBootstrap technique to get mock HFI data

Three steps:

1 denoising of the HFI raw frequency maps through a simple wavelet
transform with 1.5σ thresholding ::::::::::::::::: DHFI,den(ν)

2 generation of Ntot = 100 noise realizations from Planck jackknife maps of
the sky region of interest ::::::::::::::::: ηu(ν) (u = 1,. . . , Ntot)

3 calculation of the Ntot simulated frequency maps :::::::::::::::::

DHFIu(ν) = DHFI,den(ν) + ηu(ν)
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We set the tSZ error to be σd = std(s1
tSZ, . . . , sNtot

tSZ )

(Baldi et al., to be submitted)
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Significance of the signal: y/σd
A2029
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A comparison with B15 version: cluster A2319
Maps of the tSZ effect
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Main differences:
I effect of removing the 857 GHz channel from last smooth
I impact of the new deconvolution

(Baldi et al., to be submitted)
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A comparison with B15 version: cluster A2319
Cuts from bootstrap maps

B15 version
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Main differences:
I effect of removing the 857 GHz channel from last smooth
I impact of the new deconvolution ::::::::::::::::: reliable reconstruction down to y ≈ 10−6

(Baldi et al., to be submitted)
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Substructures vs pressure profiles

Using the tSZ for detecting overpressureUsing the tSZ for detecting overpressureUsing the tSZ for detecting overpressureUsing the tSZ for detecting overpressureUsing the tSZ for detecting overpressureUsing the tSZ for detecting overpressureUsing the tSZ for detecting overpressureUsing the tSZ for detecting overpressureUsing the tSZ for detecting overpressureUsing the tSZ for detecting overpressureUsing the tSZ for detecting overpressureUsing the tSZ for detecting overpressureUsing the tSZ for detecting overpressureUsing the tSZ for detecting overpressureUsing the tSZ for detecting overpressureUsing the tSZ for detecting overpressureUsing the tSZ for detecting overpressure
NIKA and NIKA2 already shed some light on this, see:
I Adam et al. (2018): promising results from the application of filtering

techniques
I Ruppin et al. (2018): assessment of substructure impact on the pressure

profile and mass estimate of cluster PSZ2 G144.83+25.11
I Ruppin et al. (2019): pressure profiles vs cluster morphology of twin

clusters between MUSIC2 and NIKA2 tSZ Large Program

NIKA2 vs PlanckNIKA2 vs PlanckNIKA2 vs PlanckNIKA2 vs PlanckNIKA2 vs PlanckNIKA2 vs PlanckNIKA2 vs PlanckNIKA2 vs PlanckNIKA2 vs PlanckNIKA2 vs PlanckNIKA2 vs PlanckNIKA2 vs PlanckNIKA2 vs PlanckNIKA2 vs PlanckNIKA2 vs PlanckNIKA2 vs PlanckNIKA2 vs Planck
I NIKA2’s high angular resolution and sensitivity makes it suitable for

intermediate to high redshift clusters
I Planck, on the other hand, allows the investigation of large and nearby

objects ::::::::::::::::: X-COP
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Masks for unbiased pressure profiles
Proposed methodProposed methodProposed methodProposed methodProposed methodProposed methodProposed methodProposed methodProposed methodProposed methodProposed methodProposed methodProposed methodProposed methodProposed methodProposed methodProposed method

Three steps:

1 use our tSZ maps to identify substructures
2 mask the corresponding pixels in the HFI maps
3 extract cluster pressure profiles (forward approach of Bourdin et al., 2017)
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Masks for unbiased pressure profiles
Proposed methodProposed methodProposed methodProposed methodProposed methodProposed methodProposed methodProposed methodProposed methodProposed methodProposed methodProposed methodProposed methodProposed methodProposed methodProposed methodProposed method

Three steps:
1 use our tSZ maps to identify substructures
2 mask the corresponding pixels in the HFI maps
3 extract cluster pressure profiles (forward approach of Bourdin et al., 2017)

Conditions imposed for maskingConditions imposed for maskingConditions imposed for maskingConditions imposed for maskingConditions imposed for maskingConditions imposed for maskingConditions imposed for maskingConditions imposed for maskingConditions imposed for maskingConditions imposed for maskingConditions imposed for maskingConditions imposed for maskingConditions imposed for maskingConditions imposed for maskingConditions imposed for maskingConditions imposed for maskingConditions imposed for masking
The overpressure signal from substructures is identified as:

ysubs = y − ymodel and ysubs > ybck

being:
I y : total ySZ map, renormalized to ymodel

I ymodel: model map (NKV07 with the parameters from the best fit)
I ybck: background signal estimated as ybck = 〈y(r > 4R500)〉
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Masks for the X-COP clusters
(Preliminary!)
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Some examples: A2319
(Preliminary!)
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Some examples: A2029
(Preliminary!)
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Some examples: A1795
(Preliminary!)
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Final remarks

ConclusionsConclusionsConclusionsConclusionsConclusionsConclusionsConclusionsConclusionsConclusionsConclusionsConclusionsConclusionsConclusionsConclusionsConclusionsConclusionsConclusions
We presented:
I an improved parametric algorithm featuring sparse representations to map

the tSZ effect, from Planck 2018 data for the X-COP clusters, showing:
I capability of detecting anisotropic features in the outskirts down to

y ≈ 1 × 10−6 with high significance
I agreement with known results from literature and ancillary X-ray data

I a possible method to estimate unbiased pressure profiles from the masking
of tSZ-detected overpressure, finding promising preliminary results for the
X-COP clusters

Upcoming developmentsUpcoming developmentsUpcoming developmentsUpcoming developmentsUpcoming developmentsUpcoming developmentsUpcoming developmentsUpcoming developmentsUpcoming developmentsUpcoming developmentsUpcoming developmentsUpcoming developmentsUpcoming developmentsUpcoming developmentsUpcoming developmentsUpcoming developmentsUpcoming developments
I A detailed analysis of pressure profiles upgraded to Planck PR3 data
I a dedicated work on the most significant tSZ detection by Planck: A2319

. . . plus possible works to exploit the synergy with NIKA2 data for selected targets
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