Absolute calibration of future CMB *B*-mode experiments using the

Jonathan Aumont IRAP — Toulouse, France A. Ritacco, J. F. Macías-Pérez, N. Ponthieu & A. Mangilli

mm Universe @ NIKA2 — Grenoble — June 5th 2019

CMB – Temperature anisotropies

CMB – Polarization

E-mode polarization (parity-even)

[Kamionkowski+16]

★ *TT* spectrum: cosmological parameters from density perturbations

- ★ *TT* spectrum: cosmological parameters from density perturbations
- ★ EE spectrum: model coherence, leaves degeneracies $(\tau, n_s, ...)$

- ★ *TT* spectrum: cosmological parameters from density perturbations
- ★ EE spectrum: model coherence, leaves degeneracies $(\tau, n_s, ...)$
- ★ *BB* lensing spectrum: gravitational lensing of *EE* modes, large-scale structures

- \star *TT* spectrum: cosmological parameters from density perturbations
- **★** *EE* spectrum: model coherence, leaves degeneracies $(\tau, n_{s}, ...)$
- ★ *BB* lensing spectrum: gravitational lensing of *EE* modes, large-scale structures
- ★ *BB* primordial spectrum: tensor perturbations from primordial gravitational wave background, linearly scaled by tensor to scalar ratio *r*, linked to the energy scale of inflation

- ★ *TT* spectrum: cosmological parameters from density perturbations
- ★ EE spectrum: model coherence, leaves degeneracies $(\tau, n_{s}, ...)$
- ★ *BB* lensing spectrum: gravitational lensing of *EE* modes, large-scale structures
- ★ BB primordial spectrum: tensor perturbations from primordial gravitational wave background, linearly scaled by tensor to scalar ratio r, linked to the energy scale of inflation

- \star *TT* spectrum: cosmological parameters from density perturbations
- **★** *EE* spectrum: model coherence, leaves degeneracies $(\tau, n_{s}, ...)$
- $\star BB$ lensing spectrum: gravitational lensing of EE modes, large-scale structures
- ★ *BB* primordial spectrum: tensor perturbations from primordial gravitational wave background, linearly scaled by tensor to scalar ratio *r*, linked to the energy scale of inflation
- ★ Unknown amplitude, best upper limit is r < 0.06 [BICEP2/ Keck Array+18] (see D. Barkats' talk)

★ Experiments are designed and build that target $r = 10^{-3}$

CMB – Beyond the B-modes

- ★ "Standard" cosmology does not produce *TB* and *EB* spectra (parity conserving physics)
- **★** Cosmological birefringence is a rotation of the polarization plane that changes *E* modes into *B* modes and thus produces non zero *TB* and *EB* spectra
 - → May reveal parity violation in either the electromagnetic (e.g. cosmological pseudo-scalar field [e.g. Carroll99]) or gravitational sectors (e.g. chiral gravitational waves [e.g. Lue+99]) of the fundamental interactions
 - May reveal primordial magnetic fields through Faraday rotation (frequency dependent, $\mathbf{B} < 4.4 \text{ nG}$ [Planck 2015 XIX])
- ★ No evidence for cosmological *TB* and *EB* spectra yet
- ★ Foregrounds (interstellar dust and synchrotron) produce frequency dependent non zero *TB* and *EB* spectra (*TB* already measured [Planck Int. XXX])

CMB – Absolute angle calibration

★ Timestream of data for a single polarization sensitive detector:

$$d_i(t) = g_i \left[T(\mathbf{n}) + \frac{1 - \varepsilon_i}{1 + \varepsilon_i} \right]$$

Detector's polarization angle projected onto the sky

the detector onto the sky

 $(Q(\mathbf{n})\cos 2\psi_i + U(\mathbf{n})\sin 2\psi_i)$

With:

 $\psi_i = \psi_i^{\rm design}$ $\Delta \psi$ Miscalibration (or birefringence) Intended orientation of

CMB – Absolute angle (mis-)calibration $\psi_i = \psi_i^{\text{design}} + \Delta \psi$

★ Behaviour of the Stokes parameters under a miscalibration of the polarization angle:

$$\tilde{Q}(\mathbf{n}) \pm i\tilde{U}(\mathbf{n}) = e^{\pm 2i\Delta\psi} \left(Q(\mathbf{n}) \pm iU(\mathbf{n})\right)$$

★ Behaviour of the polarized angular power spectra:

$$\tilde{C}_{\ell}^{EE} = \sin^2(2\Delta\psi)C_{\ell}^{BB} + \cos^2(2\Delta\psi)C_{\ell}^{EE} - \sin(4\Delta\psi)C_{\ell}^{EB}$$
$$\tilde{C}_{\ell}^{BB} = \cos^2(2\Delta\psi)C_{\ell}^{BB} + \sin^2(2\Delta\psi)C_{\ell}^{EE} + \sin(4\Delta\psi)C_{\ell}^{EB}$$
$$\tilde{C}_{\ell}^{TE} = \cos(2\Delta\psi)C_{\ell}^{TE} - \sin(2\Delta\psi)C_{\ell}^{TB}$$
$$\tilde{C}_{\ell}^{TB} = \sin(2\Delta\psi)C_{\ell}^{TE} + \cos(2\Delta\psi)C_{\ell}^{TB}$$
$$\tilde{C}_{\ell}^{EB} = \frac{1}{2}\sin(4\Delta\psi)(C_{\ell}^{EE} - C_{\ell}^{BB}) + (\cos^2(2\Delta\psi) - \sin^2(2\Delta\psi))$$

 $(\psi)) C_{\ell}^{EB}$

Pagano+09] e.g. ee [S

CMB – Absolute angle (mis-)calibration $\psi_i = \psi_i^{\text{design}} + \Delta \psi$

★ Behaviour of the Stokes parameters under a miscalibration of the polarization angle:

 $\tilde{Q}(\mathbf{n}) \pm i\tilde{U}(\mathbf{n}) = e^{\pm i \hat{U}(\mathbf{n})}$

★ Behaviour of the polarized angular power spectra:

For $\Delta \psi \ll 1$, $C_{\rho}^{BB} \ll C_{\rho}^{EE}$, C_{ρ}^{TB} C_{ℓ}^{BB} C_{ℓ}^{TB} C^{EB}_{ρ}

* Need for a exquisite calibration of the absolute polarization angle to be able to constrain primordial *BB*, *TB* or *EB* signals!

$$=^{2i\Delta\psi}\left(Q(\mathbf{n})\pm iU(\mathbf{n})\right)$$

$$\ll C_{\ell}^{TE} \text{ and } C_{\ell}^{EB} \ll C_{\ell}^{EE} :$$

$$\simeq 4\Delta\psi^2 C_{\ell}^{EE}$$

$$\simeq 2\Delta\psi C_{\ell}^{TE}$$

$$\simeq 2\Delta\psi C_{\ell}^{EE}$$

CMB – Angle calibration state-of-the-art

GROUND CALIBRATION

- → Depends a lot on the design
- Mechanical alignment of the system orientation is in principle very good
- Need anyway to be validated during operations
 because of thermal effects and environment
 change

SELF-CALIBRATION

- → assumes *TB* and *EB* are only instrumental
- ➡ Good accuracy, probes system during operations
- Loose constraining power on fundamental phenomena
- Problem of foregrounds

EXTERNAL CALIBRATION SOURCE

- → On a satellite (e.g. Calsat [Johnson+15]), a balloon (e.g. POLOCALC [Nati+17]), etc...
- Potential good accuracy, probes system during operations
- → Never done

SKY CALIBRATION

- Probes system during operations, no science loss
- Frequency dependence, time variability, extended sources
- → Best option is Crab Nebula (Tau A)

CRAB – SED

★ The Crab Nebula (Tau A) is a plerion-type supernova remnant, observed from radio to X-rays

- * Synchrotron emission from radio to mm wavelengths is well characterised by a single power law, both in temperature and polarisation [Ritacco+18]
 - → single population of relativistic electrons responsible for the emission of the nebula.
 - → degree and angle of polarisation of the Crab nebula are expected to be constant across frequencies in this range

(see A. Ritacco's talk)

CRAB – Polarized emission

- ★ The Crab nebula microwave emission has an extension of about 5 × 7 arcmin
- ★ Highly polarized synchrotron emission with a polarization fraction of ~ 20% (~7% convolved by typical CMB experiment beams)
- ★ Most intense polarized source in the microwave sky, at angular scales of few arcminutes

(see A. Ritacco's talk)

IRAM XPOL maps, [Aumont+10]

CRAB – Polarization angle compendium

\star Compilation of:

- \rightarrow WMAP [Aumont+10]
- → Planck-LFI [Planck 2015 XXVI], Planck-HFI, re-analyzed in [Ritacco+18])
- → IRAM's XPOL [Aumont+10] and NIKA [Ritacco+18]
- ★ Polarization angles compatible with a constant angle of:

[Aumont+10,Weiland+11,Planck 2015 XXVI,Ritacco+18]

[Aumont+19]

(see A. Ritacco's talk)

CRAB – Combining current (and future) measurements

Experiment	ν (GHz) Beam		$\psi_{\text{Gal}}(\text{deg})$	Statistical Systema		tic $\Delta \psi_{\text{Gal}}^{\text{sys.}}(\text{deg})$		
		size	/ Oai (~~8)	$\Delta \psi_{\text{Gal}}^{\text{stat.}}(\text{deg})$	Ground	EB	TB	
WMAP	23	53'	-88.5	0.1	1.5			
	33	40′	-87.7	0.1	1.5		—	
	41	31'	-87.3	0.2	1.5	_	—	
	61	21'	-87.7	0.4	1.5		—	
	94	13′	-88.7	0.7	1.5		—	
Xpol	90	27″	-88.8^{\star}	0.2	0.5	_	_	[Rosset+1
Planck-LFI	30	33′	-89.26	0.25	0.5	_	_	
	44	27′	-88.65	0.79	0.5	_	_	
	70	13′	-87.49	1.33	0.5	_	—	
Planck-HFI	100	10′	-87.52	0.16	1.00	0.63	0.22	[Planck T
	143	7′	-86.61	0.21	1.00	0.42	0.27	
	217	5'	-87.93	0.25	1.00	0.51	0.83	
	353	5′	-86.76	0.52	1.00			
Nika	150	18″	-84.3•	0.7	2.3			

nt.

XLVI]

CRAB – Combining current (and future) measurements

Name	Assumption	Statistical error	Systematic error	Planck Systematics	New experiment	Crab pol. angluncertainty $\Delta \psi$
max	Maximum difference between the mean value and one measurement	×	×	×	×	3.96°
stddev	Standard deviation of the measurements	×	×	×	×	1.24°
cst-PlanckGround	Constant angle			Ground	×	0.27°
cst-PlanckEB	Constant angle			EB	×	0.22°
cst-PlanckTB	Constant angle			TB	×	0.17°
st-PlanckTB+future	Constant angle			TB		0.11°

2 bands with 0.2° total error

 1σ

CMB – Miscalibration due to the Crab measurement uncertainty

CMB – Likelihood posterior on r

[Aumont+19]

- **\star** Likelihood analysis of *r* in presence of a spurious signal due to the absolute polarization angle miscalibration
- ★ Assumption of a constant angle is crucial for next generation experiments
- ★ Current measurements could allow to probe $r = 10^{-2}$
- ★ Future accurate measurements of the Crab are needed to meet the requirements of future CMB experiments to measure $r = 10^{-3}$ (e.g. LiteBIRD, CMB-S4)

SUMMARY

- * Absolute calibration of the polarization angle is crucial for the CMB cosmology
- * Sky calibration of the polarization angle allows to jointly test the system during its operations and to conserve the *TB* and *EB* science
- ★ Crab Nebula is the best candidate for sky calibration
- competitive calibration source
- ★ Current measurements could allow to probe $r = 10^{-2}$
- CMB experiments to measure $r = 10^{-3}$ (e.g. LiteBIRD, CMB-S4)

★ The assumption that the Crab polarization angle is constant has to be made in order to be a

★ Future accurate measurements of the Crab are needed to meet the requirements of future