

Cluster cosmology with the Planck satellite

Juan Francisco MACÍAS-PÉREZ on behalf of the Planck collaboration mm Universe @ NIKA2 Observing the millimeter Universe with the NIKA2 camera 2019 June 3-7 LPSC Grenoble FRANCE

The scientific results that we present today are a product of the Planck Collaboration, including individuals from more than 100 scientific institutes in Europe, the USA and Canada

Outline

- I. Clusters of galaxies and the Sunyaev-Zeldovich effect
- II. Measuring cluster thermal SZ with Planck
- III. Cluster SZ cosmology with Planck
- IV. Conclusions

Clusters of galaxies

- First observed by Zwicky in 1930's who inferred that their total mass was larger than the sum of its luminous components
- Largest gravitationally bound structures in the Universe
 - Dominated by dark matter
 - Most baryonic matter is in the form of gas, the Inter Cluster Medium (ICM)
 - Galaxies count for only 3 % of the total mass
- Formed by gravitational collapse at the intersection of cosmic filaments, correspond to massive dark matter halos
 - Self-similar scenario: clusters are scaled copies one of each others
 - However, baryonic physics plays a significant role
- Total mass 10^{13} $10^{16} M_{\odot}$, redshift 0 < z < 3

Cluster observables

Cluster observables: detect them and/or measure their physical properties

Visible and IR emission

Light from stars in galaxies

X-ray emission

Free-free emission from free electrons in the ICM

Sunyaev-Zeldovich effect

Interaction of hot electrons in the ICM with CMB photons

Radio emission

Non thermal emission from accelerated particles

J.F. Macías-Pérez - LPSC

Mass:

- Richness (number of galaxies)
- Luminosity profile
- Velocity dispersion
- Gravitational lensing

Density, temperature, entropy, mass:

- surface brightness
- spectroscopy

Pressure, mass, shocks:

Compton parameter

Shocks:

Surface brightness

Sunyaev-Zeldovich effect

- tSZ = CMB spectral distortion from interaction with clusters' hot electrons
- kSZ = CMB Doppler shift from bulk motion of electrons (typically ~ tSZ/10)

SZ experiments

MUSTANG

ACT

ALMA

NIKA/NIKA2

SPT

PLANCK

Outline

I. Clusters of galaxies and the Sunyaev-Zeldovich effect

II. Measuring cluster thermal SZ with Planck

- III. Cluster SZ cosmology with Planck
- IV. Conclusions

The PLANCK satellite

- 3rd generation of satellites for CMB studies (after COBE and WMAP)
- Launched by ESA on 14th of May 2009 from Lagrange L2 point Operated continuously from 12th August 2009 to 23rd October 2013
- 1.5 m telescope, complex cryogenic system: V-grooves, sorption cooler,
- 2 independent cryogenic instruments:
 - LFI, radiometers 30-70 GHz, cooled down to 18 K
 - HFI, bolometers 100-857 GHz, cooled down to 100 mK3
- Full sky coverage in 6-7 months, () full-sky surveys for HFI (LFI)

J.F. Macías-Pérez - LPSC

mm Universe @ NIKA2

The PLANCK satellite

- 3rd generation of satellites for CMB studies (after COBE and WMAP)
- Launched by ESA on 14th of May 2009 from Lagrange L2 point Operated continuously from 12th August 2009 to 23rd October 2013
- 1.5 m telescope, complex cryogenic system: V-grooves, sorption cooler,
- 2 independent cryogenic instruments:
 - LFI, radiometers 30-70 GHz, cooled down to 18 K
 - HFI, bolometers 100-857 GHz, cooled down to 100 mK3
- Full sky coverage in 6-7 months, () full-sky surveys for HFI (LFI)

	30	44	70	100	143	217	353	545	857
Resolution (arcmin)	32	28	13	9	7	4.7	4.5	3.8	3.6
Sensitivity (µK _{CMB} s ^{1/2})	146	173	152	23	20	28	116	814	23798

J.F. Macías-Pérez - LPSC

Planck satellite maps

SZ with the Planck satellite

Planck satellite has been specifically designed to extract the tSZ signal on clusters

A2319

Use both specific cluster size and shape as well as spectral form

mm Universe @ NIKA2

Planck cluster sample

- Use specific multi-scales and multi-wavelengths filters to detect clusters
- Three catalogs has been released: ESZ(2011), PSZ1 (2013), PSZ2 (2015)
- PSZ2: 1653 clusters detected
- 1203 confirmed from existing surveys and follow-up programs in X-rays (XMM newton) and optical/IR (several telescopes)

- Develop adapted component separation algorithms: MILCA and NILC preserve tSZ signal and nullify CMB emission
- First full-sky map of the tSZ emission

High sensitivity nearby clusters tSZ maps

Complex interacting systems

Multi-wavelength comparisons

Xray vs SZ

SDSS8 vs Planck SZ

Outline

- I. Clusters of galaxies and the Sunyaev-Zeldovich effect
- II. Measuring cluster thermal SZ with Planck
- III. Cluster SZ cosmology with Planck
- IV. Conclusions

Cosmology with clusters

Cluster distribution in mass and redshift depends on cosmological parameters

mm Universe @ NIKA2

A bit of tSZ cluster cosmology theory

Cluster number counts

$$\frac{dN}{dz} = \int d\Omega \int dM_{500} \hat{\chi}(z, M_{500}, l, b) \frac{dN}{dz \, dM_{500} \, d\Omega}$$

tSZ power spectrum

$$C_{\ell}^{\text{1halo}} = \int_{0}^{z_{\text{max}}} dz \frac{dV_{\text{c}}}{dz d\Omega} \int_{M_{\text{min}}}^{M_{\text{max}}} dM \frac{dn(M,z)}{dM} |\tilde{y}_{\ell}(M,z)|^{2}$$

Universe properties:

Volume of the Universe

Mass and redshift cluster distribution

Cluster properties and dynamical state:

Hydrostatic to total mass bias

Cluster pressure distribution

tSZ flux to hydrostatic mass relation

Data analysis

Cluster selection function

Noise distribution in the y-map

Planck tSZ cluster cosmology l

Cluster number counts

tSZ power spectrum

J.F. Macías-Pérez - LPSC

A bit of cluster complexity

Cluster number counts

[Planck 2015 results: XXVII]

6 CMB Planck 2015 results. XXVII ö CMB+BAO 10 0.85 SZ α +BAO (proj) $M_{500} \left[10^{14} \, M_{\odot} \right]$ b = 0.20.80 σ_8^{o} 0.75 PSZ2 Common PSZ2-ACT Common PSZ2-SPT SPT 0.70 0.0 0.5 1.0 1.5 Redshift 0.32 0.30 0.34 0.36 0.38 0.28 0.40 Ω_{m} 0.96 CMBlens 160 CCCP N(z,q) best fit (CCCP, α constrained) 0.90 WtG 140 N(z,q) best fit (CCCP, α free) CMBlens (reanalysis) N(z) best fit (CCCP, α constrained) Planck CMB 120 0.84 N(z) best fit (CCCP, α free) observed counts 100 _ഗ∞ 0.78 N(z) 80 0.72 60 0.66 40 20 0.60 Planck 2015 results. XXIV 0.20 0.25 0.30 0.35 0.40 0.45 0.50 0 0.0 0.2 0.4 0.6 0.8 1.0 $\Omega_{
m m}$ [Planck 2018 results: I]

J.F. Macías-Pérez - LPSC

planci

mm Universe @ NIKA2

J.F. Macías-Pérez - LPSC

planck tSZ Planck cosmology summary

Cluster number counts

tSZ power spectrum

• 2-σ tension between CMB and tSZ derived cosmological parameters

- This is also true for other cluster observables
- Need to understand cluster physics: hydrostatic bias, condition for hydrostatic equilibrium, shocks in the ICM, non thermal pressure, ...
- Need to cross check mass function definitions

Multi-wavelength cluster cosmology

Outline

- I. Clusters of galaxies and the Sunyaev-Zeldovich effect
- II. Measuring cluster thermal SZ with Planck
- III. Cluster SZ cosmology with Planck
- IV. Conclusions

Conclusions

- Clusters of galaxies provide a cosmological probe of choice
- Large number of cluster observables can be used
- SZ effect opens a new window for the detection, study and cosmological use of clusters of galaxies
- Recent CMB experiments like Planck, ACT and SPT have released large catalogs of tSZ detected clusters making SZ cosmology possible
- SZ cluster cosmology, as for any other cluster observable, is in tension with CMB cosmology and seems to be limited by the knowledge of the mass-observable scaling relations
- Better understanding of cluster physics is needed to improve cosmology with clusters and eventually understand discrepancy with CMB cosmology
- Stay tune for more cluster cosmology in this conference: see Mayet, Ruppin, Bartalucci and Bolliet talks

J.F. Macías-Pérez - LPSC

mm Universe @ NIKA2

PACT

J.F. Macías-Pérez - LPSC