Calibration & Performance of NIKA2

Laurence Perotto on behalf of the NIKA2 Collaboration

ILLUSTRATION Clément C. Fabre

mm Universe @ NIKA2

Observing the millimeter Universe with the NIKA2 camera

11

3-7 June 2019 LPSC Grenoble

Objectives & Outline

Objectives

- 1. presentation of the *baseline* calibration method
- 2. report on the performance assessment

Perotto, Ponthieu, Macías-Pérez et al. 2019 [in internal reviewing]

+ F.-X Désert, J.-F. Lestrade, H. Aussel, F. Mayet, F. Ruppin: a.k.a. the Commissioning Tiger Team

Outline

- 1. KID arrays and bandpass
- 2. Short summary of the commissioning phase
- 3. Data set
- 4. Field-of-view reconstruction
- 5. Beam
- 6. Atmospheric opacity estimation
- 7. Flux density calibration
- 8. Photometric stability & robustness assessment
- 9. Sensitivity
- 10. Summary

Arrays and bandpass

- 260 GHz frequency channel
 - a.k.a. « 1 mm »
 - 2 arrays:
 - Array 1 : 260-V
 - Array 3 : 260-H
 - bandwidth = 50 GHz
- 150 GHz frequency channel
 - a.k.a. « 2 mm »
 - Array 2
 - bandwidth = 40 GHz
- In laboratory measurements
 - filters included / no dichroic
 - precision : 1%
- On-going in situ measurements using a dedicated interferometer [see Alessandro's Talk]
- Minimal use of the bandpass for the baseline calibration (color correction only)

Commissioning

- First light in October 2015
- First campaign with a complete readout electronic in January 2016
- 10 commissioning campaigns (about 60 days)
- Upgrade in September 2016
- February 2017: First campaign in the final instrumental set-up N2R9
- April 2017: commissioning successively completed, Science Verification Phase
- September 2017: IRAM End-of-commissioning review

NIKA2 is now opened to the community for the next decade

- October 2017: First «Summer» scientific campaign N2R12
- January 2018: First «Winter» scientific campaign ______
- Already 18 scientific campaigns (about 4 per semester) [see Bilal's Talk]
- ~ 2030: NIKA2 is a resident instrument at IRAM 30-m telescope

The reference campaigns for the performance assessment

N2R14

Data set & baseline scan selection

Reference data set

- 3 observation campaigns (N2R9, N2R12, N2R14)
- > 1000 observation scans (150h) per campaigns

Baseline scan selection

- We perform a mild selection on the observing conditions
 - (tau x air mass) < 0.7 @ 1mm \rightarrow a factor two atmospheric attenuation on the flux density
 - elevation > 20°
 - tau @ 1mm < 0.5</p>
- Sunrise (from 9:00 UT to 10:00 UT) and late afternoon (from 15:00 to 22:00) periods are excluded

Field-of-view (FOV) Geometry

- Matching the KID frequency tones to positions on the sky is needed for each observation campaign
- We use beammaps = deep integration scans of about 20' toward bright point sources to perform individual maps per KID
- From these maps, we derive i) KIDs positions on the FoV, ii) beam properties, iii) inter-calibration
- These info are gathered in the «KID database» for the campaign : the reference kidpar

The full 6.5 arcmin diameter FOV is covered

KID selection

- All the (2,900) design KIDs are responsive!
- Some of them are affected by cross-talk or their frequency tuning is lost during a scan
- we perform a KID selection from a series of quality criteria for several beam-map scans

KID position colour-coded as a function of the number of times they met the selection criteria (from red = valid for all selections to blue = valid in two selections)

fraction of 'valid' (=stables in at least 2 scans) KIDs: 84% at 260 GHz and 90% at 150GHz

Beam Pattern

Deep integration map using a combination of beammaps

Observed features:

- main beam
- error beams
- diffraction ring
- M2 quadrupod arms
- other spikes

Stability checks

Main Beam

- Modeling the main beam with a Gaussian, we fit the main beam FWHM
- We developed 3 methods that mitigate the error beams and side lobes contribution in different ways, for methodological robustness test
- Stability checks against atmospheric conditions using a series of bright source scans

Average FWHM

11.1" ± 0.2" at 260 GHz 17.6" ± 0.1" at 150 GHz

→ better than specifications (12"@260GHz, 18"@150GHz)

Main Beam Efficiency

- Definition: ratio between the solid angle of the main beam and the total solid angle
- We estimate the main beam efficiency up to a radius of 180" : BE_180

55% ± 3% at 260 GHz 77% ± 2% at 150 GHz

- We estimate some correction to the measured total solid angle (Omega_180) to account for the power at radii>180" [Kramer+2013]
- The total solid angle is a key measurement for the aperture photometry and for the study diffuse source (more details later on)

FWHM daily variations

- The measured FWHM depends on the time of the day at which the observation was made
- Already observed with MAMBO-2, impact also EMIR
- Two main probable origines:
 - large-scale deformation of the 30m primary mirror subject to partial solar illumination
 - Anomalous refraction
- Hence the name: temperature-induced beam variations
- Two most impacted periods :
 - Sunrise 9:00 to 10:00 UT
 - Late afternoon 15:00 to 22:00 UT

Observation acquired during these periods are discarded for the calibration and performance assessment

Atmospheric opacity

The uncorrected flux densities are exponentially attenuated by the atmospheric absorption

•
$$ilde{S}_{
u} = S_{
u} \, e^{- au_{
u} x}$$
, the airmass is estimated as $x = (\sin e l)^{-1}$

 $au_{
u}$ We compare 2 methods to estimate the atmospheric opacity in NIKA2 bandpass

Using the 225 GHz resident taumeter

- time-stamped τ_{225} : 1 measure every 4 minutes at a fixed azymuth
- interpolated at the time of the scan
- interpolated at NIKA2 observing frequencies

Using NIKA2 as a taumeter for each scan

Catalano, Calvo, Ponthieu et al. 2014

1) We calibrate the relation between the KID resonance shift and the atmospheric opacity

$$f^k_{
m reso} = \mathcal{F}_k(au_
u)$$
 for all the KIDs k

and invert it to compute the opacity for each scan 2)

$$\tau_{\nu} = \operatorname{Med}\left(\mathcal{F}_{k}^{-1}(f_{reso}^{k})\right)$$

NIKA2 skydip-derived opacity

• Calibration of the relation between $f_{\rm reso}^k$ and τ_{ν} \rightarrow the c_0^k, c_1^k estimation

$$f_{\rm reso}^k = c_0^k - c_1^k T_{\rm atm} [1 - e^{-\tau_\nu x}]$$

Example of C0, C1 fit for one KID 15.7 HW 15.6 H5.5 15.4 0 100 200 300 Tsky [K]

- We use NIKA2 skydip scans
 11 elevation steps between ~ 20 and 65°
- Joint fit of $c_0^k, \, c_1^k$ for all the KIDs using a series of skydip scans at varying opacity

Opacity measurements: consistency checks

- same correlation between the NIKA2 skydip-derived opacity and the 225GHz taumeter opacity for the 3 refence campaigns
- no dependence on the observing elevation

Photometric system & Calibration

14/26

Practical calibration

KID gains

1) Estimation of a calibration coefficient per KID at zero opacity using a *beammap* scan toward Uranus

$$G_k = \frac{S_c(\nu_0) \, e^{-\tau_\nu \, x}}{A_k}$$

--- relative calibration and absolute calibration on a single scan

Multi-scan recalibration

2) Improvement of the absolute calibration in monitoring Uranus all along the campaign we compute the averaged expected-to-measured flux per array

$$< rac{S^{
m theo}(
u_0)}{S_
u^{
m meas}} >$$

Flat fields

• FOV distribution of the KID gains G_k w.r.t. the average gain

- We observe a large variation of the KID gains across Array 1: about 1/3 of A1-KIDs are shadowed
- This is due to a default in the transmission of the polarised light at 1mm by the dichroic
- September 2018 dichroic replacement test: the shadow-zone disappeared at 1mm at the price of huge distortion of the 2mm beam : the current dichroic has been re-installed.

Photometric check using secondary calibrators

■ We use MWC349: routinely monitored using PdBI/NOEMA and VLA → the most reliable flux densities expectation at the NIKA2 frequencies

less flux ratio dispersion using NIKA2 skydip than using taumeter

Photometric check using secondary calibrators

■ We use MWC349: routinely monitored using PdBI/NOEMA and VLA → the most reliable flux densities expectation at the NIKA2 frequencies

- less flux ratio dispersion using NIKA2 skydip than using taumeter
- BUT small correlation with the atmospheric transmission at 1mm

Baseline calibration: the corrected skydip method

- for the *baseline* calibration, we use a corrected version of the NIKA2 skydip opacity estimates = aka corrected skydip
- we fit a correcting factor to τ_{skydip} so that the flux density is constant for all the scans of MWC349 taken at N2R9 (68 scans)

$$S_{\nu} = \tilde{S}_{\nu} \ e^{a_{\nu} \tau_{\rm skydip} x}$$

 $a_A1 = 1.36 \pm 0.04$; $a_A3 = 1.23 \pm 0.02$; $a_1mm = 1.27 \pm 0.03$; $a_A2 = 1.03 \pm 0.03$

stability checks using the 3 reference campaigns (N2R9 + N2R12 + N2R14)

Using the corrected skydip opacity estimate, MWC349 flux density measurements are stable against the atmospheric opacity and consistent for 3 campaigns

Statistical calibration uncertainties

- we use all the scans of bright (> 1 Jy) sources to estimate the statistical calibration uncertainties
- we compute the rms of the median-to-measured flux densities

Statistical calibration uncertainties

- we use all the scans of bright (> 1 Jy) sources to estimate the statistical calibration uncertainties
- we compute the rms of the median-to-measured flux densities

19/26

Systematic calibration uncertainties

All effects depending on the observing conditions or source properties are accounted for in the rms estimates

Other effects that are not accounted for include :

	1mm	2mm
 Uranus model uncertainties 	5%	5%
 Uncertainties on the corrected skydip factor $\Delta a_ u^{ m skydip}$ = 0.03 	3	
reference IRAM 30m winter conditions (pwv = 2mm, el = 60°)	0.6%	0.3%
→ mediocre observing conditions tau_nu x = 0.7 @ 1mm, 0.5 @ 2	2mm 2%	1.5%
 Precision of the bandpass measurement (used for color correction) 	1%	
depends on the source SED, but neglectible in most of the case	es <0.1 %	

Calibrating during the afternoon I/II

- Temperature-induced variation of the beam size during sunrise and afternoon → Flux variation
- Basic idea: jointly monitor the beam size & the flux to correct for this effect

$$S_{\text{pcorr}} = f(\text{FWHM})$$
 photometric correction

- We use pointing scans to monitor the FWHM
 - 4 subscans of 10 s : enough to project a map and fit the FWHM
 - one pointing per hour : enough to monitor the FWHM
 - interpolation of the FWHM at the time of the scan = FWHM_{pointing}
- Comparison of FWHM_{pointing} for bright sources and the fitted FWHM on the map

Calibrating during the afternoon II/II

We repeat the absolute calibration using the photometric correction and compare to the *baseline* results

Encouraging results: alternative method if precise FWHM monitoring is made (using dedicated scans)

Sensitivity

Noise Equivalent Flux Density (NEFD): the 1σ error on the flux density in 1s of on-source integration time

 $\sigma_S(t) = \text{NEFD} e^{\tau_{\nu} x} / \sqrt{t_{\text{det}}}$ on-source time spent by a detector

Data set: we use deep integration (about 3hrs) on a moderately weak source (NIKA1 fluxes: 37mJy@1.2mm & 9mJy@2.1mm), HLS J0918+5142

- the flux uncertainties scale down as 1/sqrt(time)
- both methods give consistent results

Sensitivity vs atmospheric conditions

NEFD estimates using >1000 scans of sub-Jy sources acquired during 3 campaigns

• Mapping speed: the sky area that can be mapped at a noise level of 1mJy in 1 hour $M_{\rm s} = \eta \frac{\pi}{4} d_{\rm FOV}^2 \frac{1}{\rm NEFD^2}$

	A1&A3	A2
NEFD [mJy s ^{1/2}]	30 ± 3	9 ± 1
M_s [arcmin ² / mJy ² / h]	111 ± 11	1388 ± 174

• State-of-the-art mapping speed : mJy-scale source can be detected in less than 1 hour of integration!

Performance summary

The performance assessment relies on the *baseline calibration method* (FWHM_0 Gaussian amplitude) We have used all scans of 3 observation campaigns taken during the 16h most stable hours of the day

		Array 1&3	Array 2
Bandpass	Reference Wavelength [mm]	1.15	2.00
	Reference Frequency [GHz]	260	150
•	Frequency [GHz]	254.7-257.4	150.9
FOV reconstruction	Bandwidth [GHz]	49.2-48.0	40.7
	Number of designed detectors	1140	616
	Number of valid detectors ^a	952-961	553
	► Fraction of valid detectors [%]	84	90
	Pixel size in beam sampling unit ^b $[F\lambda]$	1.1	0.87
Beam	FWHM ^c [arcsec]	11.1 ± 0.2	17.6 ± 0.1
•	\rightarrow Beam efficiency ^d [%]	55 ± 3	77 ± 2
	Relative rms FWHM on the FOV [%]	6	3
	Reference FWHM ^e [arcsec]	12.5	18.5
Calibration uncertainty	Reference Beam efficiency ^{f} [%]	70 ± 4	85 ± 3
	Rms pointing error [arcsec]	<	3
	Absolute calibration uncertainty [%]	5	
	→ Relative rms calibration error [%]	5.7	3.0
	α noise integration in time ^g	0.5	0.5
Sensitivity	→ NEFD ^h [mJy \cdot s ^{1/2} /beam]	30 ± 3	9 ± 1
	M_s^i [arcmin ² /h/mJy ²]	111 ± 11	1388 ± 174

NIKA2 has state-of-the art performance and unique capabilities

Hardware-based improvements

- the sensitivity of Array 1 is mainly limited by a non-optimal transmission of the current dichroic
- the temperature-induced beam variation is worsened by the surface of the 30m primary mirror
 [see Alessandro's Talk]

Software-based improvements

- The *baseline* calibration method relies on a « simple and robust » noise decorrelation, well-suited for point-source study. Other methods are currently developped to
 - improve the measure of the Beam Efficiency and measure at radius larger than 180"
 - improve the removal of the correlated noise [see Nico's Talk]
- Better treatment of the time of the day impacted by the temperature-induced beam variations
 - beam size monitoring using the pointing scans is promising but not sufficient : need dedicated scans for an accurate monitoring of the beam

A large amount of good-quality science data are available: a wealth of astrophysical and cosmological results are coming!

The results presented here are the fruit of a huge amount of work by the NIKA2 collaboration Involving 150 people in 18 institutes (NIKA2 consortium + IRAM)

Noise properties

- Dominant noise is the atmospheric fluctuations:
 - inducing strong 1/f noise spectrun Ο
 - As it is seen by all the detectors, it can be decorrelated 0

After decorrelation, correlated noise residuals from the atmosphere and the electronics at sub-dominant level in the maps

...which do not affect the noise scaling down with integration time : we checked that the flux uncertainties reduce as 1/sqrt(t)

Calibration et performance

	150 GHz	260 GHz
Number of detectors	616 (553)	2x 1140 (960)
FoV diameter	6.5'	6.5′
Angular resolution: FWHM	17.6" ± 0.2"	11.1" ± 0.1"
Calibration uncertainties (rms)	3%	6%
Sensitivity: NEFD	9 ± 1 mJy.s ^{1/2}	30 ± 3 mJy.s ^{1/2}

Multi-scan calibration

• We monitor Uranus flux during the campaign and estimate the expected-to-measured flux ratio

- no significant correlation with the atmosperic transmission
- more rms dispersion using « taumeter » than « NIKA2 skydip »

Diffuse source calibration

• For diffuse source or aperture photometry, the maps in Jy/FWHM_0 must be converted in Jy/sr

 $M_{\rm ap} = \frac{{\rm BE}_0}{2\pi\sigma_0^2} M_{\rm s} \qquad \qquad {\rm reference \ beam \ efficiency} \\ {\rm solid \ angle \ of \ the \ FWHM_0 \ Gaussian}$

- We estimate the reference beam efficiency up to a radius of 180"
- For aperture photometry on deep integration scan or for studying very extended source, we must account for the power stemming from 180" and r_cut
- We use the large-scale beam pattern characterisation using moon limb observations with EMIR

Kramer et al. (2013)

• ... to calculate correcting factors to BE_0 $\eta_{r_c} = \left(1 + \frac{\Omega_{180 < r < r_c}}{\Omega_{180}}\right)^{-1}$

		A1	A3	A1&3	A2
account for the power up to 180"	$\frac{\text{FWHM}_0 \text{ [arcsec]}}{\text{BE}_0{}^a} \text{ [\%]}$	12.5 70 ± 4	12.5 72 ± 4	12.5 70 ± 4	18.5 85 ± 3
account for the 3 error beams up to 390"	$\eta_{390} \ \eta_{ m tot}$	0.95 0.78	0.95 0.78	0.95 0.78	0.96 0.85
account for all beam contributions	-				