Impact of B fields on high-mass star formation

Frédérique Motte (IPAG Grenoble) & Fabien Louvet (U. Chile)

Special credits to I. Ristorcelli (IRAP Toulouse), A. Maury and P. Didelon (CEA-Saclay), and C. Arce (U. Chile)

NIKA2 collaborators for coming projects:
P. André, A. Andrianasolo, B. Ladjelate, N. Peretto, N. Ponthieu, I. Ristorcelli, A. Ritacco, J.-F. Robitaille...
in the framework of the *Herschel*/HOBYS and ALMA-IMF consortia

mm Universe @ NIKA2, June 5, 2019

Outline

Introduction

- Star formation scenarios
- Expected role of magnetic field

Role of B-field on pc scales

- Investigating the coupling with cloud/clump structure
- Investigating the coupling with gas dynamics

Role of B-field on sub-pc scales

- Investigating the coupling with core ellipticity
- Investigating the coupling with disk, jet and rotation

Conclusion

The multi-scale process of star formation: From massive cloud complexes to individual protostars

mm Universe @ NIKA2, June 5, 2019

Low-mass star formation scenario

High-mass star formation scenario

Global hierarchical collapse

Stars, cores, and ridges simultaneously grow from the mass of their parental cloud.

- \Rightarrow "clump-fed" model
- ⇒No need of a highmass prestellar core phase

Motte, Bontemps & Louvet ARA&A 2018

Star formation: origin of the stellar masses

→ The distribution of core masses (CMF) is expected to vary with the Galactic environment (density, kinematics, magnetic field)
 → Will the resulting IMF finally be universal ?

The role of B-field in shaping the ISM through filamentary structures

Filaments in the Diffuse ISM

mostly aligned mm Universe @ NIKA2, June 5, 2019

NH transition between // and perp. orientations F. Motte & F. Louvet, IPAG & U. Chile

Modeling of Nearby Filaments

Planck XXXIII 2016 (c.a. Arzoumanian)

B-fields within dense filaments do not have the same orientation as in the Background

The role of B-field for star formation

Star-forming material is (partly) coupled to the ambient magnetic field

• @ scales ~1 pc:

B field guides accretion onto star-forming filaments (e.g. Palmeirim 2013)

• @ scales ~0.1-0.01 pc:

B field regulates the collapse and fragmentation (mass segregation, limitation of the fragmentation, e.g., Hennebelle & Inutsuka 2019)

• @ scales ~1000 AU:

> B field regulates the geometry of collapsing cores \Rightarrow B field perpendicular to cores major axis (e.g. Li et al. 2013)

- B field regulates the momentum of circumstellar material (magnetic braking, e.g. Pudritz & Ray 2019)
- \Rightarrow ejection of jets/outflows along the B field

Outline

Introduction

- Star formation scenarios
- Expected role of magnetic field

Role of B-field on pc scales

- Investigating the coupling with cloud/clump structure
- Investigating the coupling with gas dynamics

Role of B-field on sub-pc scales

- Investigating the coupling with core ellipticity
- Investigating the coupling with disk, jet and rotation

Conclusion

Magnetic field topology from filaments to cores

mm Universe @ NIKA2, June 5, 2019

Orientation relative to the B field for star-forming filaments and cold clumps

Planck all-sky catalogue of Galactic cold clumps (Planck Collaboration XXIII 2011, XXVIII 2015, c. a. Montier)

 \Rightarrow ~13 100 clumps (0.1-1 pc) within filaments

mm Universe @ NIKA2, June 5, 2019

Statistical analysis of the relative orientation

mm Universe @ NIKA2, June 5, 2019

F. Motte & F. Louvet, IPA

Most high-density clouds should form by global collapse and braid of sub-filaments

mm Universe @ NIKA2, June 5, 2019

Ridges are braids of filaments whose collapse is slowed by rotation and/or B-fields

Consistent with PDF studies (Russeil+ 2013; Schneider+2015)and inflow studies (e.g. Wyrowski+ 2016).

 \Rightarrow NIKA2-Pol project toward ridges (B-FUN on DR21, OT Proposal for MonR2...)

mm Universe @ NIKA2, June 5, 2019

Characterizing the coupling of B-field and gas inflows in high-mass star-forming ridges

Gas inflow and magnetic fields are largely unknown in high-density medium

⇒ combined efforts of observations (inc. NIKA2-Pol project), numerical simulations, and multi-scale analysis

mm Universe @ NIKA2, June 5, 2019

F. Motte & F. Louver, IPAO & O. Chine

Outline

Introduction

- Star formation scenarios
- Expected role of magnetic field

Role of B-field on pc scales

- Investigating the coupling with cloud/clump structure
- Investigating the coupling with gas dynamics

Role of B-field on sub-pc scales

- Investigating the coupling with core ellipticity
- Investigating the coupling with disk, jet and rotation

Conclusion

Relative orientation of protostellar cores and outflows with magnetic fields

131 cores detected with getsources (2000 AU, ~1-100 M_{\odot})

▶ 44 outflow lobes (CO(2-1) and SiO(5-4); Nony et al. in prep.)

B-field topology (1.3mm, Louvet et al. in prep. Arce et al. in prep.)

mm Universe @ NIKA2, June 5, 2019

Projected angle of polarization vector with the core big axis and outflows direction

Cumulative Distribution Functions (CDF) of 60 elliptic cores and 44 outflow lobes

Cores tend to be perpendicular to $B_{surrounding}$ (see also Alina et al. 2019) Outflows have random directions (see also Hull et al. 2014; Galametz et al. 2019) \Rightarrow NIKA2-Pol and ALMA-Pol projects toward clusters of cores

mm Universe @ NIKA2, June 5, 2019

Magnetic field and the redistribution of the angular momentum

Alignment or misalignment of B-field lines and envelope rotation Impact on core/stellar multiplicity

- Heritage of the core B-field depends on the B-field strength

mm Universe @ NIKA2, June 5, 2019

Take-away message

• High-mass star formation

High-mass stars form in high-density, massive, and dynamical filaments/clumps. The effect of cloud dynamics and its coupling with magnetic fields require investigations on several decades of scales (0.01-100 pc).

- Impact of B-fields on high-mass star formation
 - Complex coupling with gas inflows
 - B-field lines tend to be perpendicular to the cores major axis
- NIKA2-Pol will constrain B fields at the missing scales between Planck and ALMA. We are at the dawn of making major discoveries on the
 - Mass segregation of cores and top-heavy CMF
 - Deceleration of the global collapse measured on pc scales

mm Universe @ NIKA2, June 5, 2019