Probing Physics of Galaxy Cluster Outskirts with High-Resolution SZE Spectral Imaging

Daisuke Nagai

Yale University NICA2 @ Grenobles June 4, 2019

High-Resolution SZE Frontier #1: Cosmology & Astrophysics with tSZ + kSZ

Key Observables: Gas Pressure + Density Profiles Challenges: Mass Calibration + Selection Function

Mroczkowski et al. 2019, Space Science Review

High-Resolution SZE Frontier #2: from ICM to CGM/IGM

Galaxy Clusters

Most baryons are in gaseous form across all halo masses. Galaxy clusters are powerful platforms for studying the physics of gas in halo outskirts.

Today: Stacked SZ measurements

Detection of warm-hot gas down to M∗~10^{10.8}M ∘ with stacked Planck measurements of LBGs

Future: Stacked SZ measurements

Sensitivity to Gas Properties Near r200

Stacked tSZ and kSZ measurements provide unique constraints on warm-hot gas in CGM and ICM, especially at high-z

Omega 500 Simulation Project

High-Resolution *N*-body+Gasdynamics Cosmological Simulation with Adaptive Refinement Tree (ART) code on Yale's OMEGA HPC Cluster

Box size = 500h⁻¹ Mpc, DM particle mass \approx 10⁹h⁻¹M_{\odot}, Peak Spatial Resolution \approx 3.8 h⁻¹ kpc

- 500h⁻¹ Mpc zoom-in cosmological hydrodynamical simulations of 65 galaxy clusters with M_{500c} > 3x10¹⁴ h⁻¹ M_☉ in WMAP5 cosmology (Nelson et al. 2014)
- Three runs: (1) simple non-radiative gas physics, (2)
 +galaxy formation physics, (3) +AGN feedback physics.

Erwin Lau

Camille Avestruz Kaylea Nelson

Han Aung

Physics of Galaxy Cluster Outskirts vs. Cores Lessons from Hydro Cosmo Simulations

Cluster Outskirts

Gas Accretion & Non-equilibrium phenomena

- 1. Splashback & Shock Radii
- 2. Gas clumping & inhomogeneities
- 3. Non-thermal pressure due to gas motions
- 4. Filamentary gas streams
- 5. Non-equilibrium electrons

Tractable

Key Parameters Mass & MAH

Walker et al. 2019, Space Science Review

✦Cluster Cores

Heating, Cooling & Plasma physics

- 1. AGN feedback (Mechanical/CR heating)
- 2. Dynamical Heating, Gas sloshing
- 3. Thermal Conduction, Magnetic Field, He sedimentation

Outstanding Challenge - especially critical for X-ray surveys (e.g., eROSITA)

Physics of Cluster Outskirts #1 Splash vs. Shock Radii

DM splashback computed using SHELLFISH (Mansfield+17)

Accretion shock radius is ~2 times larger than the splashback radius, making the hot ICM extend beyond the splashback radius.

Physics of Cluster Outskirts #2 Electron-Proton Equilibration in Cluster Outskirts

In the outskirts of galaxy clusters, the collision rate of electrons and protons becomes longer than the age of the universe.

Physics of Cluster Outskirts #3 Non-thermal Pressure

Non-thermal pressure due to bulk and turbulent gas motions affects the thermodynamic properties of the cluster outskirts

Physics of Cluster Outskirts #3 Analytic Model of Non-thermal Pressure

0.6

Comparison to the Omega 500 simulation (Nelson+14)

Shi & Komatsu 2014 (analytical model)

Analytic model can match the results of hydro. sims. remarkably well, **but not directly observed**

"Averaged Gas Dynamics": Modified Jeans Equation

Previous works used Jeans equation + thermal pressure to characterize *collisional* gas dynamics in galaxy clusters (e.g., Rasia+04, Lau+09, Suto+13)
 Inviscid collisional gas follows the Euler Equation:

$$\frac{\partial \mathbf{v}}{\partial t} + (\mathbf{v} \cdot \nabla)\mathbf{v} + \frac{\nabla P}{\rho} = -\nabla \Phi$$

Observations measure gas properties averaged over some finite region (e.g., spherical shell) where gas motions can be uncorrelated

Performing spatial average of the Euler Equation leads to a Jeans-like equation plus thermal pressure:

$$\frac{\partial \langle \mathbf{v} \rangle}{\partial t} + (\langle \mathbf{v} \rangle \cdot \nabla) \langle \mathbf{v} \rangle + \frac{1}{\langle \rho \rangle} \nabla \langle \rho \rangle \sigma^2 + \frac{1}{\langle \rho \rangle} \nabla \langle P \rangle = -\nabla \langle \Phi \rangle$$

AccelerationBulk flowRandom motionsThermal pressurePotentialLau, Nagai, Nelson 2013, ApJ, 777, 151

Weighing Cluster Mass with Averaged Gas Quantities

 $abla \Phi$

 $d\mathbf{S}$

 \mathcal{M}

 ∂V

Measuring mass with Gauss' Law:

$$M = \frac{1}{4\pi G} \oint_{\partial V} \nabla \Phi \cdot d\mathbf{S}$$

Combined with modified Jeans Equation:

$$M = \frac{-r^2}{G\langle\rho\rangle} \nabla_r \langle P \rangle + \frac{-r^2}{G\langle\rho\rangle} \nabla_r \langle\rho\rangle \sigma^2 + \frac{-r^2}{G} (\langle\mathbf{v}\rangle \cdot \nabla) \langle v_r \rangle + \frac{-r^2}{G} \frac{\partial \langle v_r \rangle}{\partial t}$$
$$M_{\text{HSE}} \qquad M_{\text{rand}} \qquad M_{\text{bulk}} \qquad M_{\text{accel}}$$

Lau, Nagai, Nelson 2013, ApJ, 777, 151

Probing Non-thermal Pressure & HSE mass bias of Galaxy Clusters with X-ray Spectroscopy

0.5

[Mpc]

Bulbul et al. 2019, Astro2020 White Paper (astro-ph/1903.06356) c.f. Simionescu et al. 2019, Space Science Review

High-resolution SZ probe of Non-thermal Pressure in Cluster Outskirts

Testing the Model Predictions with Ultra-deep, High-resolution X-ray Observations

2.4Msec Chandra XVP observation of the outskirt of A133

A transition of the smooth state in the virialized region to a clumpy intergalactic medium in the infall region outside of r $\approx R_{500c}$

High-angular resolution (<1") is critical

Walker et al. 2019, Astro2020 Decadal White Paper (astro-ph/1903.04550)

Cluster Cosmology in 2020s

X-ray

eRosita

Microwave

AdvACT

Optical

DES

Golden Era: >100,000 clusters & groups in multiple bands; huge statistical power!

Challenge: <1% mass calibration in order to maximize the scientific return

Problem: Hydro cosmo sims are still prohibitively expensive for covering the vast parameter space of astrophysics & cosmology

Solution: Computationally efficient, physically-motivated model of baryons (gas+stars) - need a new framework!

Physics-Based Approach Baryon Pasting Project

Lensing

Compton-y

X-ray surface brightness

- Analytic model of gas (Ostriker+05; Shaw+10; Flender+17; Osato+18) + stars (Behroozi+18) for creating multi-wavelength light-cone mocks (halo model or N-body sims)
- Goals: (1) cluster mass + scaling relations, (2) selection function, (3) cross-correlations, (4) cosmology

Baryon Pasters team: H. Aung, C. Avestruz, G. Evrard, A. Farahi, S. Green, A. Hearin, H.J. Huang, E. Lau, R. Makiya, P. Mansfield, H. Miyatake, D. Nagai, B. Nord, K. Osato, M. Shirasaki

How to Maximize SZ Science from CMB-HD survey?

Problem: Hydro sim. still prohibitively expensive for analyzing large CMB+LSS datasets and modeling baryonic effects & cosmology

Solution: Computationally efficient, physically-motivated **analytic model of the ICM/CGM**

- (1) Gas resides in HSE in DM halos with the polytropic EoS
- (2) Assume some gas has radiatively cooled + formed stars. Stellar mass fraction constrained by observed relations.
- (3) Energy feedback from stars and AGN (e.g., assume feedback energy proportional to stellar mass) and dynamical heating
- (4) Non-thermal pressure from random and bulk gas motions
- (5) Cool-core with a broken polytropic model

Ostriker+05, Bode & Ostriker+06, Shaw+10, Flender+17

Testing the Analytic Model of the ICM with Hydro Simulations

Analytic model can reproduce the results of hydro simulations by Battaglia+16 (see also Soergel+17)

Calibrating the Analytic Model of the ICM with X-ray observations

Gas density profile from extended Shaw Model from Flender+17

McDonald+13: Chandra measurements of gas density profiles of SPT-selected clusters Vikhlinin+06, Sun+09, Lovisari+15: measurements of the M_{gas}-M relation

X-ray constraints on the Optical Depth of Groups & Clusters

X-ray data can constrain the optical depth of groups and clusters at the level of 10%, but missing constraints on CGM at high-z!

Data-Driven Approach X-ray Cluster Mass Estimates

Mock X-ray images of 329 clusters with $M_{500c} \ge 10^{13.6}$ Msun, augmented with many viewing angles of each cluster from the Illustris TNG-300 simulation

The ML-based X-ray cluster mass has a small scatter of 8-12%, which is a significant improvement from 15-18% scatter based on the core-excised X-ray luminosity - the current market standard.

Beyond the Black Box: Interpreting the model with Deep Dream

What changes in the input cluster image will result in a mass change of this image?

CNN has learned to excise core, which are known to have large scatter with mass.

Perhaps, ML can also teach us about astrophysics of cluster outskirts in hydro sims (Walker+19 for a recent review)

Beyond Hydrodynamics Electron-Proton Equilibration in Cluster Outskirts

In the outskirts of galaxy clusters, the collision rate of electrons and protons becomes longer than the age of the universe. Pressure profile measurements in cluster outskirts will be critical!

Cluster Cosmology & Astrophysics Simulation + Observation + Theory Connection

Observational Frontier

2020s will be a Golden Age of Cluster Surveys High-Resolution, Low-Noise Frontier is critical in 2020+ Map out DM+gas+stars in clusters + galaxies + cosmic web

CNB-S4 Next Generation CMB Experiment

Athena (2031-)

Theoretical Frontier

Physics-based + Data-driven approaches

Simulations Cosmological Hydro + Plasma effects

Analytic Model Baryon Pasting Project

Sciences

Cluster Cosmology with X-ray+SZE+Lensing Physics of ICM/CGM/IGM + Missing Baryons Galaxies+Gas+DM Halo Connections