



E LA RECHERCHE À L'INDUSTRI



Journée thématique du réseau détecteurs semiconducteurs IN2P3 – IRFU: Les detecteurs à pixels; 31/05 – 01/06/2018; Daniel Maier

# **OVERVIEW**

- review: CALISTE
- D2R1:
  - design and architecture
  - first verification tests
  - next steps
- outlook: MC2

# **REVIEW: CALISTE: IDeF-X**

- the Caliste detector modules are based on IDeF-X readout ASICs
  - started in 2003; now in 7<sup>th</sup> generation
  - properties:
    - optimized for low C<sub>in</sub> & low I<sub>dark</sub>
    - ultra-low noise,
    - low power consumption
    - channel individual triggered readout
    - designed for space applications



### **REVIEW:** applications of IDeF-X



# **REVIEW:** applications of CALISTE

- STIX on Solar Orbiter (CALITE-SO)
  - solar mission, 2020 (ESA Cosmic Vision)
- ORIGAMIX (CALISTE-HD & -O)
  - portable gamma camera for nuclear safety
- SATBOT (CALISTE-HD)
  - assisted radiotherapy using Au-NP
- MACSI (8 x CALISTE-HD)
  - proof of concept for large focal planes
  - 4-side buttability

















2×10<sup>4</sup> 3 X coordinates (micrometers)

5

#### **REVIEW: ASIC parameters of interest**

|             | # ch | size            | technology      | dynamic<br>range | energy<br>range | floor<br>noise | power |
|-------------|------|-----------------|-----------------|------------------|-----------------|----------------|-------|
|             | -    | um <sup>2</sup> | -               | fC               | keV<br>(CdTe)   | e⁻ (rms)       | mW/ch |
| IDeF-X V1.1 | 16   | 3000 x<br>4000  | 350 nm<br>3.3 V | 10               | 250             | 37             | 2.8   |
| IDeF-X V2   | 32   | 2800 x<br>6400  | 350 nm<br>3.3 V | 8                | 200             | 33             | 3.0   |
| IDeF-X HD   | 32   | 3500 x<br>5900  | 350 nm<br>3.3 V | 10-40            | 250-1000        | 31             | 0.8   |
| D2R1        | ?    | ?               | ?               | ?                | ?               | ?              | ?     |

#### **REVIEW: ASIC parameters of interest**

- What do we want to achieve?
- Which parameters need modification?
- How to do it?

→ a look on the detector characteristics might help...

#### **REVIEW: detector parameters of interest**

|             | ASIC               | # pix      | pixel<br>pitch | detector<br>area | thickness | spectr. res           | power              |
|-------------|--------------------|------------|----------------|------------------|-----------|-----------------------|--------------------|
|             |                    |            | um             | mm <sup>2</sup>  | mm        | eV (FWHM<br>@ 60 keV) | mW/mm <sup>2</sup> |
| Caliste-64  | 4 x IDeF-X<br>V1.1 | 8 x 8      | 900            | 10 x 10          | 1         | 900                   | 3.0                |
| Caliste-256 | 8 x IDeF-X<br>V2   | 16 x<br>16 | 580            | 10 x 10          | 1         | 860                   | 8.3                |
| Caliste-HD  | 8 x IDeF-X<br>HD   | 16 x<br>16 | 625            | 10 x 10          | 1         | 670                   | 2                  |
| Caliste-O   | 8 x IDeF-X<br>HD   | 16 x<br>16 | 800            | 14 x 14          | 2         | 927                   | 1                  |

# D2R1: design changes

#### What do we want to achieve?

 Spectro-imaging detector placed in the focus of a high resolution X-ray optics (10-20" for a focal length of 10-20m)

#### Which parameters need modification?

- pixel pitch → much lower (defined by the mirror resolution and by the constraints for the spectral resolution)
- power consumption per channel → much lower as there are many channels per area

#### Important parameters to keep:

- spectral res.  $\rightarrow$  nearly Fano limited (like for Calsite-HD)
- dynamic range  $\rightarrow$  2-250 keV (limited by mirror efficiency)

#### • How to do it?

- New concept: hybrid detector

#### **REVIEW: ASIC parameters of interest**

|             | # ch | size                                        | technology      | dynamic<br>range | energy<br>range | floor<br>noise | power |
|-------------|------|---------------------------------------------|-----------------|------------------|-----------------|----------------|-------|
|             | -    | um <sup>2</sup>                             | -               | fC               | keV (CdTe)      | e⁻ (rms)       | mW/ch |
| IDeF-X V1.1 | 16   | 3000 x<br>4000                              | 350 nm<br>3.3 V | 10               | 250             | 37             | 2.8   |
| IDeF-X V2   | 32   | 2800 x<br>6400                              | 350 nm<br>3.3 V | 8                | 200             | 33             | 3.0   |
| IDeF-X HD   | 32   | 3500 x<br>5900                              | 350 nm<br>3.3 V | 10-40            | 250-1000        | 31             | 0.8   |
| D2R1        | 256  | 16 x 16<br>(300 x<br>300) +<br>300 um<br>GR | 180 nm<br>1.8 V | 10               | 250             | <=31           | 0.18  |

### D2R1: a hybrid detector

- how to connect detector and ASIC?
  - wire bonding: + (almost) independent of detector or ASIC layout
    - additional stray capacitance
  - **bump bonding**: + minimal stray capacitance





## D2R1: a hybrid detector

#### Wire bonding connection (System in Package)

# 4-side buttability

stray capacitance





Caliste-O

Caliste-256



## D2R1: noise analysis in a nutshell

- electronic noise mainly defined by the CSA
- $ENC^2 = ENC_{TH}^2 + ENC_{F}^2 + ENC_{SH}^2$ 
  - thermal noise  $ENC_{TH}^2 = (C_{fb} + C_{in})^2 * a_{TH} / t_{peak}$
  - 1/f noise  $ENC_{F^2} = (C_{fb} + C_{in})^2 * a_F$
  - shot noise  $ENC_{SH}^2 = I_{leak} * t_{peak} * a_{SH}$
- detector parameters:
  - input capacitance C<sub>in</sub>
  - leakage current I<sub>leak</sub>
- ASIC parameters:  $a_{TH}$ ,  $a_F$ ,  $a_{SH}$ ,  $C_{fb}$ 
  - the a-parameters depend on the shaper and on the CSA input transistor → "Caterpillar" optimization
  - C<sub>fb</sub> defines the dynamic range
- operational parameters: shaping time t<sub>peak</sub>



### **D2R1: CSA optimization**



14

## D2R1: filter = pulse shaper

- signal : U(t)  $\xrightarrow{FT}$  signal power (f)
- noise:  $U(t) \xrightarrow{FT}$  noise power (f)
- optimize SNR by attenuating more noise than signal
  - band pass: low-pass + high-pass filter
- within IDeF-X: CR-RC<sup>N</sup> filter (semi-Gaussian)
  - implementation as analog electronics
  - realized as opamp-based active filter
  - $t_{peak} = N * RC$
- Multi Correlated Double Sampling (MCDS)
  - discrete processing method with sampling rate f<sub>s</sub>
  - output = mean(baseline) mean(baseline + signal)
  - averaging  $\rightarrow$  low-pass filter
  - subtraction → high-pass filter
  - filter parameter can be adjusted easily:  $t_{peak} = N/f_s$





Michalowska, thesis Irfu, 2013

#### **D2R1: architecture**

#### - 256 x pixel architecture

- CSA
- MCDS
- Trigger logic
- control





# **D2R1: architecture**

- 256 x pixel architecture
  - CSA
  - MCDS
  - Trigger logic
  - control
- 1 x top-level architecture
  - set in-pixel slow control
  - global trigger
  - addressing column to read



#### readout network



- cooling down to  $T = -7^{\circ}C$
- depletion voltage U = 300V for d = 750 um detector thickness
- sources:
  - Am-241
  - Co-57



- cooling down to  $T = -7^{\circ}C$
- depletion voltage U = 300V
- sources:
  - Am-241
  - Co-57
- results:
  - (almost) all pixel are working → bump bonding seems fine



- cooling down to  $T = -7^{\circ}C$
- depletion voltage U = 300V
- sources:
  - Am-241
  - Co-57
- results:
  - (almost) all pixel are working → bump bonding seems fine
  - avg. resolution: 742 eV FWHM @ 60 keV



- cooling down to  $T = -7^{\circ}C$
- depletion voltage U = 300V
- sources:
  - Am-241
  - Co-57
- results:
  - (almost) all pixel are working → bump bonding seems fine
  - avg. resolution: 742 eV FWHM @ 60 keV
  - best pixel: 584 eV FWHM
    @ 60 keV



- cooling down to  $T = -7^{\circ}C$
- depletion voltage U = 300V
- sources:
  - Am-241
  - Co-57
- results:
  - (almost) all pixel are working → bump bonding seems fine
  - avg. resolution: 742 eV FWHM @ 60 keV
  - best pixel: 584 eV FWHM
    @ 60 keV



- cooling down to  $T = -7^{\circ}C$
- depletion voltage U = 300V
- sources:
  - Am-241
  - Co-57
- results:
  - (almost) all pixel are working → bump bonding seems fine
  - avg. resolution: 919 eV FWHM @ 122 keV
  - best pixel: 817 eV FWHM
    @ 122 keV



- cooling down to  $T = -7^{\circ}C$
- depletion voltage U = 300V
- sources:
  - Am-241
  - Co-57
- results:
  - (almost) all pixel are working → bump bonding seems fine
  - avg. resolution: 919 eV FWHM @ 122 keV
  - best pixel: 817 eV FWHM
    @ 122 keV



#### **D2R1: next steps**

- Test pixel homogeneity and bump bonding reliability with 4 more D2R1 detector modules
- Study splits events in more detail:

| - | singles | 81.2 % |  |
|---|---------|--------|--|
| _ | doubles | 16.5 % |  |

- triples 0.6% > for Am-241
- quadruples 0.7 %
- mismatches 1.0%
- Investigate the application as X-ray polarimeter

# **OUTLOOK: MC2**

- D2R1 → D2R2:
  - 16 x 16 pixels  $\rightarrow$  32 x 32 pixels
  - $0.5 \times 0.5 \text{ cm}^2 \rightarrow 1 \times 1 \text{ cm}^2$
- OWB-1: ADC
  - 32 channel 13 bit ADC for space applications
- MC2: 4 x (D2R2 + OWB-1)
  - 64 x 64 pixel
  - 2 x 2 cm<sup>2</sup>
  - fully digital (ADC included)



#### **OUTLOOK: MC2**

|                 | ASIC               | # pix      | pixel<br>pitch | detector<br>area | thickness     | spectr. res                 | power              |
|-----------------|--------------------|------------|----------------|------------------|---------------|-----------------------------|--------------------|
|                 |                    |            | um             | mm <sup>2</sup>  | mm            | eV (FWHM<br>@ 60 keV)       | mW/mm <sup>2</sup> |
| Caliste-64      | 4 x IDeF-X<br>V1.1 | 8 x 8      | 900            | 10 x 10          | 1             | 900                         | 3.0                |
| Caliste-256     | 8 x IDeF-X<br>V2   | 16 x<br>16 | 580            | 10 x 10          | 1             | 860                         | 8.3                |
| Caliste-HD      | 8 x IDeF-X<br>HD   | 16 x<br>16 | 625            | 10 x 10          | 1             | 670                         | 2                  |
| Caliste-O       | 8 x IDeF-X<br>HD   | 16 x<br>16 | 800            | 14 x 14          | 2             | 927                         | 1                  |
| Caliste-<br>MC2 | 4 x D2R2           | 64 x<br>64 | 300            | 20 x 20          | 0.75 –<br>2.0 | at least like<br>Caliste-HD | 2                  |

**References:** 

- A. Michalowska et al., 2011, "Multi-dimensional optimization of charge preamplifier in 0.18 um CMOS technology, IEEE

- A. Michalowska, 2013, "Studies and development of a readout ASIC for pixelated CdTe detectors for space applications", Ph. D. dissertation, Université Paris Sud – Paris XI, Saclay, France

- F. Bouyjou et al., 2017, "A 32-Channel 13-b ADC for Space Applications"



28

#### **D2R1**



#### D2R1: trigger



Figure 4.6 Block diagram of a single discriminator in the  $D^2R_1$  readout channel. Each channel contains two identical discriminators, operating with interleaved clock phases.



Figure 4.7 Chronogram of control phases of two parallel discriminators of  $D^2R_1$  readout channel. One supervised by the CLK signal and one by the  $\overline{CLK}$  signal.