

Microdosimeter for Hadron Therapy based on a Single Crystal CVD Diamond Membrane

Izabella Anna Zahradnik

Journée thématique du réseau détecteurs semiconducteurs IN2P3 - IRFU 2018, Les détecteurs à pixels

Introduction and motivation

Hadron therapy and microdosimetry

Diamond microdosimeter

- Concept and fabrication
- Probing charge transport properties ion microbeam
 - Micro Sensitive Volumes
 - Charge collection efficiency
 - Radiation hardness
 - Preliminary test in clinical environment

Hadron Therapy

list

Ceatech

Linear Energy Transfer

SPARSELY ionizing radiation:

e.g.: X-rays, Gammas

DENSELY ionizing radiation:

e.g.: Carbon ions

Microdosimetry & Radiation Quality

"MICRODOSIMETRY is a method which involves measurements or calculations of stochastic energy deposition distribution in a micron size sensitive volume (SV) within any arbitrary mixed radiation field."

Concept of solid state microdosimetry:

- Single-particles (low charge)
- ns to µs integration time (10⁹ p/cm²)
- Pulse-height spectra
- SV from micro to nano size

(30 μ m cell \rightarrow 10 μ m cell nucleus \rightarrow << 1 μ m DNA)

[Tran, Rosenfeld et al., Med. Phys., 44 (11), November 2017]

Why Diamond? - State of the Art

Tissue Equivalent Proportional Counter (TEPC):

list

Clatech

Silicon solid-state microdosimeters:

Diamond solid state microdosimeter:

Large band-gap (5.5 eV) semiconductor

more tissue equivalent (Z = 6) and radiation hard

- High ~13 eV/e-h lower signal
- Diamond 6' wafers rather difficult

Since 2002 high purity electronic grade CVD diamond available commercially

Interests for diamond microdosimeter in the research community

Università di Roma "Tor Vergata" – Prof. Marinelli

University of Wollongong – Prof. Rozenfeld

Diamond Microdosimeter Concept

scCVD diamond self-biased µSV (external bias @ 0V):

Charge transport @ 0V:

list

Ceatech

p+ and intrinsic diamond (p-i-m):

intrinsic diamond (m-i-m):

Diamond membrane microdosimeter prototypes

list

Ceatech

scCVD diamond membrane microdosimeter fabrication:

Probing Charge Transport with IBIC

- Single ion irradiation (precision: 1 micron)
- Raster scanning + pulse height spectra

list

Ceatech

- Charge transport maps (µSV definition)
- Well controlled projectile energy and LET

Perfect tool to test new types of microdosimeters before implementing in clinical conditions (less control)

IBIC – 2.0 MeV proton Microbeam

Raster scan of device @ 0 V

* Number of detected ions / pixel

IBIC – Diamond Signal @ 0 V

2.0 MeV Proton Microbeam 25 x 25 μm² SV

16.6 MeV Carbon Microbeam 45 x 45 μm² SV

2.0 MeV Proton Microbeam

list

Ceatech

10¹³

Lineal Energy Measurement – 100 MeV Proton Beam

Institute Curie Proton Therapy Center (Orsay, France)

- Proton beamline for intracranial treatments
- 100 MeV p
- 80 mm variable thickness solid-water phantom
- 300 µm SV diamond microdosimeter prototype

Diamond membrane microdosimeter

scCVD diamond membranes have a great potential for solid-state microdosimetry

- Full CCE (proton and alpha) @ 0V, well-defined μSV, ΔE spectra, fast
- Radiation hard (proton and carbon)
- First Lineal Energy measurements in clinical proton beam (promising)

RBI, Zagreb, Croatia

Gunma University, Japan

Acknowledgement

DiamFab for growing excellent quality p+ diamond homoepitaxial layers www.diamfab.eu

This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 654168

Diamond Sensors Laboratory (LCD) for great support throughout the entire project

RBI, Zagreb, Croatia

Gunma University, Japan

Thank you for your attention

Commissariat à l'énergie atomique et aux énergies alternatives Institut List | CEA SACLAY | Laboratoire Capteur Diamant (LCD) | BAT. 451 – PC 66 C 91191 Gif-sur-Yvette Cedex - FRANCE www-list.cea.fr

Établissement public à caractère industriel et commercial | RCS Paris B 775 685 019