Développements de pixels CMOS à l'IPHC : détection alpha, beta, ions & X-rays

Journées thématiques du Réseau Semi-conducteurs - Les détecteurs à pixels Grenoble, 31 mai – 1^{er} juin 2018

J. Baudot

- → Depleted CMOS pixel sensors
- → Application to X-rays
- → Application to charged particles

Requirements from tracking/vertexing

Charged particles dosimetry

Molecular imaging with β+ emitters in moving rodent

- MAPSSIC: extreme integration in specific environment
 - Constraint on size and power dissipation
 - IMNC, IPHC, CPPM, CERMEP, NeuroPSi
- Exploit CMOS sensors derived from ALICE
 - One active probe = $160 \mu W$
 - For few counts / s
- Wireless connection from μ Controler

Three ways to deplete MAPS

J.Baudot - CMOS sensors for radiation detection - Réseau semi-conducteurs, Grenoble - 2018

Front-depletion with small diode

Complex connexion (costly)

Could stay thick => no complexity

Depleted MAPS

collecting diode (~15 V)

nwell

(the new way)

PMOS

transistor

nwell

n+

X-ray

photon

Back Side Processing

Major benefit expected

- Sensitivity to low penetrating radiations
- X-rays $\lesssim 1 \text{ keV}$
- Alpha or slow ions
- Visible photon (needs extra coating)

Depletion on prototype sensors

PIPPER-1 (2014), PIPPER-2 (2016), PIPPER-3 (2017)

- Prorotype chip 32 x128 pixels
- Analog outputs
- Pixel size 22x22 µm
- AC coupled collecting diode
- Produced on two substrates:
 - Epitaxial layer 18µm
 - Czochralski substrate
 + PULSION post-process

⁵⁵Fe irrad. function of diode bias (1-19V)

β -source SNR at -20 C, after neutron irradiation

Some PIPPER performances

Energy resolution

- Temperature ~10 °C
- Computed after clustering

Collection depth

- Computed from counts in peaks
- Deeper collection exists but at lower energy resolution

- collection fluctuationsLinearity checked up to 15 keV
- 40 μm not really fully depleted BUT fully collect

Application to X-ray fluorescence

Irradiation of Ti, V, Cr, Mn samples

- X-ray lamp with Cu target
- Ni-shielded
- Note/ Si-line = internal Fluorescence

Prototype small pixel X-ray counter

Counting Low energy X-ray - Mimosa 22SX

- X-Ray Energy Range [few 100 eV 5 keV] with 100% QE
- Counting Dynamic [1-10⁷] ph/pix/s
- High Spatial Resolution (pixel pitch $\sim 20 \,\mu m$)

- F.Orsini et al.
- Simple pin-hole diffraction
- Low energy, down to 1 keV

Column

OUTPUT J.Baudot - CMOS sensors for radiation detection - Réseau semi-conducteurs, Grenoble - 2018

Application to charged beam

Dose Monitoring by counting

CYRCé Cyclotron at IPHC:

• 24 MeV protons

• Millimetre beam size for small animal proton therapy

Motivation:

Monitor dose for small beam size (problematic with current detector)

First tests with Mimosa 22SX

- Linear behaviour in the measured fluence range
- At least 1000 protons/pix/s possible

J.Baudot - CMOS sensors for radiation detection - Réseau semi-conducteurs, Grenoble - 2018

DREAM of electronic emulsion

FOCAL T.Peitzman et al., arXiv:1708.051

- High-Granularity digital electromagnetic calorimetry
 - Stack of (tungsten + MAPS) layers

24 layer pixel detector

Pad layer integration

Several groups involved: Full prototype with pixel detectors CMOS (MIMOSA) 39M pixels, 30µm pitch use synergy with R&D for ALICE ITS upgrade Full prototype with pad readout

Performed systematic tests: Test beam data from 2 to 250 GeV (DESY, PS, SPS) Cosmic muons

- response to electrons from SPS test beam
- calculated from per-event hit density distributions

Utrecht/Nikhef (Netherlands), Bergen (Norway),

 Tsukuba, Nara, Hiroshima (Japan),

 ORNL (US)

 US

 VECC Kolkata,

 BARC Mumbai (India)

 R&D Activities with Si-pad/W Calorimeter Prototypes (Japan/ORNL, India) not covered here

Conclusion & outlooks

- CMOS processes are evolving quickly
 - Followed with related integration technologies
 - Many labs and design companies are pushing various performances
 - Ex: spectrometry, electron multiplying CMOS, ...
 - "Full" depletion of sensitieve volume opened up:
 - Time resolution: today ~10 ns, tomorrow ~100 ps ?
 - Energy resolution: today ~5% for soft X-rays

<u>2 depleted architectures emerging @ IPHC:</u>

- 1. Fast and/or time-resolved binary outputs (counting & tracking)
- 2. Energy deposited measurement outputs

Projects

- Soft X-ray spectroscopy & counting (~1cm² prototype in design)
- Ionizing particle spectroscopy (to be started with IPHC-DESiS group)
- High energy particle identification from energy loss
 (to be started with L.N.Frascati & IPHC-DRHIM)

<u>BACKUPs</u>

Energy resolution

After clustering \rightarrow Seed pixel distribution

- Energy resolution dominated by pixel-gain & charge-collection fluctuations
- o HR-18

100

- **ENC = 24 e**⁻
- Given FWHM (5.9 keV) = 280 eV
- □ 75 % charges collected on the seed pixel

• **CZ**

- □ ENC = 26 e⁻
- □ FWHM (5.9 keV) = 288 eV
- □ 68 % charges collected on the seed pixel

Photon counting?

<u>2D architecture</u>

- 1 sensor = SYNAPS-2D
- Rolling shutter with // columns analogue signal readout
 - 100-200 ns readout per row
 - About 512 rows
- Digitization (binary) at column end with <u>energy window</u>
- Dynamic range 1-2x10⁴ photons/pixel/s

Mid/Long-term → 3D architecture

- 1 sensor + 1 DSP chip = **SYNAPS-3D**
- Local rolling-shutter within submatrix
 - 1 µs readout per submatrix
 - ~10 photons (5 keV) dynamic per pixel
- Digitization + Memory in DSP
- Dynamic range 1-10⁷ photons/pixel/s

