

LIGO/VIRGO: RÉSULTATS RÉCENTS, DÉTECTIONS ET LIMITES

Tania Regimbau Dautreppe, Grenoble, 5 Dec 2018

Sources d'Ondes Gravitationnelles

- **Coalescences de systèmes binaires** : signal bien modélisé . Technique du filtre adapté à partir d'une banque de modèles.
- Sources impulsionelles (burst) : évènements courts (0.001-1000s), en général assez mal modélisés. On recherche un excès de puissance simultanément dans plusieurs détecteurs. Supernova, collapse, fusion de systèmes binaires, cordes cosmiques.
- Sources périodiques : signal faible mais qui varie très peu pendant la période d'observation. Intégration du signal sur de longues périodes de temps. Recherche aveugle ou dirigée. *Pulsars.*
- Fond gravitationnel stochastique : superposition de toutes les sources non résolues, d'origine astrophysique ou cosmologique. Corrélation de plusieurs détecteurs pour éliminer le bruit et retrouver le signal gravitationnel commun.

Sources d'Ondes Gravitationnelles

	Court	Long
Modélisé	Coalescences de système binaires	Pulsars
Non Modélisé	Sources impulsionnelles	Fond stochastique

Coalescences de binaires Compactes

Credit Kipp Thorne

Modélisation du signal:

- Phase spirale: par les théories postnewtoniennes
- Ringdown: théorie des perturbations
- Fusion: relativité numérique

Filtre adapté

 Calcule le rapport signal à bruit pour chaque détecteur, à chaque instant et pour chaque modèle.

$$\langle s|h\rangle(t) = 4 \int_0^\infty \frac{\tilde{s}(f)\tilde{h}^*(f)}{S_n(f)} e^{2\pi i f t} df$$

- Un signal est retenu comme "candidat" s'il est au dessus du seuil simultanément dans au moins 2 détecteurs.
- Supprime les candidats dûs au bruit non Gaussien. Tests pour quantifier l'accord entre les données et le modèle (chi2, qualité de l'ajustement).

Significance de l'analyse

• Classement statistique

Calcul du rapport des vraisemblances d'obtenir les paramètres mesurés du candidat, pour un signal gravitationnel et pour du bruit.

- Comparaison avec les événement du bruit de fond. Redistribution temporelle des évènements et recherche de coïncidences.
- Calcul du taux de fausse alarme:

$$FAR = \frac{N_b(\rho \ge \rho_f)}{T}$$

Recherche non modélisée

- Recherche un excès de puissance dans le domaine temps-fréquence avec pour seule hypothèse que le signal est un chirp.
- Evènements en cohérence dans plusieurs détecteurs.
- Classement des évènement selon une statistique qui tient compte du rapport signal à bruit et de la cohérence entre les sites.
- Comparaison avec les évènement du bruit de fond
- Reconstruction de la position et de la forme d'onde commune dans les détecteurs (maximum de vraisemblance, ondelettes).

14 Septembre 2015 à 09:50:45 UTC

Reconstruction du signal

Analyse des données de O1/O2

166.6 jours de données en coïncidence: 01: LIGO (12/09/2015-19/01/2016) 02: LIGO (30/11/2016-25/08/2017) + Virgo (01-25/08/2017)

Critères de sélection

- Evènement confirmé (GW) si
 - FAR<1 pour 30 ans
 - 50% de vraisemblance d'être d'origine astrophysique
- Evènement marginaux si seulement FAR<1 pour 30 ans
- Deux chaines d'analyses « filtre adapté » (GSTLAL et PyCBC). Certains évènements sont identifiés par l'une et pas par l'autre.

			FAR $[y^{-1}]$			Network SNR	
Event	UTC Time	PyCBC	GstLAL	cWB	PyCBC	GstLAL	cWB
GW150914	09:50:45.4	< 1.53 × 10 ⁻⁵	$< 1.00 \times 10^{-7}$	$< 1.63 \times 10^{-4}$	23.6	24.4	25.2
GW151012	09:54:43.4	0.17	7.92×10^{-3}	_	9.5	10.0	-
GW151226	03:38:53.6	$< 1.69 \times 10^{-5}$	$< 1.00 \times 10^{-7}$	0.02	13.1	13.1	11.9
GW170104	10:11:58.6	$< 1.37 \times 10^{-5}$	$< 1.00 \times 10^{-7}$	2.91×10^{-4}	13.0	13.0	13.0
GW170608	02:01:16.5	$< 3.09 \times 10^{-4}$	$< 1.00 \times 10^{-7}$	1.44×10^{-4}	15.4	14.9	14.1
GW170729	18:56:29.3	1.36	0.18	0.02	9.8	10.8	10.2
GW170809	08:28:21.8	1.45×10^{-4}	$< 1.00 \times 10^{-7}$	_	12.2	12.4	_
GW170814	10:30:43.5	$< 1.25 \times 10^{-5}$	$< 1.00 \times 10^{-7}$	$< 2.08 \times 10^{-4}$	16.3	15.9	17.2
GW170817	12:41:04.4	$< 1.25 \times 10^{-5}$	$< 1.00 \times 10^{-7}$	-	30.9	33.0	_
GW170818	02:25:09.1	_	4.20×10^{-5}	-	_	11.3	_
GW170823	13:13:58.5	$< 3.29 \times 10^{-5}$	$< 1.00 \times 10^{-7}$	2.14×10^{-3}	11.1	11.5	10.8

			$FAR[y^{-1}]$			Network SNR	
Event	UTC Time	PyCBC	GstLAL	cWB	PyCBC	GstLAL	cWB
GW150914	09:50:45.4	$< 1.53 \times 10^{-5}$	$< 1.00 \times 10^{-7}$	$< 1.63 \times 10^{-4}$	23.6	24.4	25.2
GW151012	09:54:43.4	0.17	7.92×10^{-3}	_	9.5	10.0	_
GW151226	03:38:53.6	$< 1.69 \times 10^{-5}$	$< 1.00 \times 10^{-7}$	0.02	13.1	13.1	11.9
GW170104	10:11:58.6	$< 1.37 \times 10^{-5}$	$< 1.00 \times 10^{-7}$	2.91×10^{-4}	13.0	13.0	13.0
GW170608	02:01:16.5	$< 3.09 \times 10^{-4}$	$< 1.00 \times 10^{-7}$	1.44×10^{-4}	15.4	14.9	14.1
GW170729	18:56:29.3	1.36	0.18	0.02	9.8	10.8	10.2
GW170809	08:28:21.8	1.45×10^{-4}	$< 1.00 \times 10^{-7}$	_	12.2	12.4	_
GW170814	10:30:43.5	$< 1.25 \times 10^{-5}$	$< 1.00 \times 10^{-7}$	$< 2.08 \times 10^{-4}$	16.3	15.9	17.2
GW170817	12:41:04.4	$< 1.25 \times 10^{-5}$	$< 1.00 \times 10^{-7}$	_	30.9	33.0	_
GW170818	02:25:09.1	_	4.20×10^{-5}	_	_	11.3	_
GW170823	13:13:58.5	$< 3.29 \times 10^{-5}$	$< 1.00 \times 10^{-7}$	2.14×10^{-3}	11.1	11.5	10.8

			FAR [y ⁻¹]			Network SNR	
Event	UTC Time	PyCBC	GstLAL	cWB	PyCBC	GstLAL	cWB
GW150914	09:50:45.4	$< 1.53 \times 10^{-5}$	$< 1.00 \times 10^{-7}$	$< 1.63 \times 10^{-4}$	23.6	24.4	25.2
GW151012	09:54:43.4	0.17	7.92×10^{-3}	_	9.5	10.0	_
GW151226	03:38:53.6	$< 1.69 \times 10^{-5}$	$< 1.00 \times 10^{-7}$	0.02	13.1	13.1	11.9
GW170104	10:11:58.6	$< 1.37 \times 10^{-5}$	$< 1.00 \times 10^{-7}$	2.91×10^{-4}	13.0	13.0	13.0
GW170608	02:01:16.5	$< 3.09 \times 10^{-4}$	$< 1.00 \times 10^{-7}$	1.44×10^{-4}	15.4	14.9	14.1
GW170729	18:56:29.3	1.36	0.18	0.02	9.8	10.8	10.2
GW170809	08:28:21.8	1.45×10^{-4}	$< 1.00 \times 10^{-7}$	_	12.2	12.4	_
GW170814	10:30:43.5	$< 1.25 \times 10^{-5}$	$< 1.00 \times 10^{-7}$	$< 2.08 \times 10^{-4}$	16.3	15.9	17.2
GW170817	12:41:04.4	$< 1.25 \times 10^{-5}$	$< 1.00 \times 10^{-7}$	_	30.9	33.0	-
GW170818	02:25:09.1	_	4.20×10^{-5}	_	_	11.3	-
GW170823	13:13:58.5	$< 3.29 \times 10^{-5}$	$< 1.00 \times 10^{-7}$	2.14×10^{-3}	11.1	11.5	10.8

GW170817

17

			$FAR[y^{-1}]$			Network SNR	
Event	UTC Time	PyCBC	GstLAL	cWB	PyCBC	GstLAL	cWB
GW150914	09:50:45.4	$< 1.53 \times 10^{-5}$	$< 1.00 \times 10^{-7}$	$< 1.63 \times 10^{-4}$	23.6	24.4	25.2
GW151012	09:54:43.4	0.17	7.92×10^{-3}	_	9.5	10.0	_
GW151226	03:38:53.6	$< 1.69 \times 10^{-5}$	$< 1.00 \times 10^{-7}$	0.02	13.1	13.1	11.9
GW170104	10:11:58.6	$< 1.37 \times 10^{-5}$	$< 1.00 \times 10^{-7}$	2.91×10^{-4}	13.0	13.0	13.0
GW170608	02:01:16.5	$< 3.09 \times 10^{-4}$	$< 1.00 \times 10^{-7}$	1.44×10^{-4}	15.4	14.9	14.1
GW170729	18:56:29.3	1.36	0.18	0.02	9.8	10.8	10.2
GW170809	08:28:21.8	1.45×10^{-4}	$< 1.00 \times 10^{-7}$	_	12.2	12.4	_
GW170814	10:30:43.5	$< 1.25 \times 10^{-5}$	$< 1.00 \times 10^{-7}$	$< 2.08 \times 10^{-4}$	16.3	15.9	17.2
GW170817	12:41:04.4	$< 1.25 \times 10^{-5}$	$< 1.00 \times 10^{-7}$	_	30.9	33.0	_
GW170818	02:25:09.1	_	4.20×10^{-5}	_	_	11.3	_
GW170823	13:13:58.5	$< 3.29 \times 10^{-5}$	$< 1.00 \times 10^{-7}$	2.14×10^{-3}	11.1	11.5	10.8

			$FAR[y^{-1}]$			Network SNR	
Event	UTC Time	PyCBC	GstLAL	cWB	PyCBC	GstLAL	cWB
GW150914	09:50:45.4	$< 1.53 \times 10^{-5}$	$< 1.00 \times 10^{-7}$	$< 1.63 \times 10^{-4}$	23.6	24.4	25.2
GW151012	09:54:43.4	0.17	7.92×10^{-3}	_	9.5	10.0	_
GW151226	03:38:53.6	$< 1.69 \times 10^{-5}$	$< 1.00 \times 10^{-7}$	0.02	13.1	13.1	11.9
GW170104	10:11:58.6	$< 1.37 \times 10^{-5}$	$< 1.00 \times 10^{-7}$	2.91×10^{-4}	13.0	13.0	13.0
GW170608	02:01:16.5	$< 3.09 \times 10^{-4}$	$< 1.00 \times 10^{-7}$	1.44×10^{-4}	15.4	14.9	14.1
GW170729	18:56:29.3	1.36	0.18	0.02	9.8	10.8	10.2
GW170809	08:28:21.8	1.45×10^{-4}	$< 1.00 \times 10^{-7}$	_	12.2	12.4	_
GW170814	10:30:43.5	$< 1.25 \times 10^{-5}$	$< 1.00 \times 10^{-7}$	$< 2.08 \times 10^{-4}$	16.3	15.9	17.2
GW170817	12:41:04.4	$< 1.25 \times 10^{-5}$	$< 1.00 \times 10^{-7}$	_	30.9	33.0	-
GW170818	02:25:09.1	_	4.20×10^{-5}	_	_	11.3	_
GW170823	13:13:58.5	$< 3.29 \times 10^{-5}$	$< 1.00 \times 10^{-7}$	2.14×10^{-3}	11.1	11.5	10.8

Filtre adapté

20

Evènement marginaux dans O1/O2

Date	UTC	Search	FAR $[y^{-1}]$	Network SNR	$\mathcal{M}^{ m det}\left[{ m M}_{\odot} ight]$	Data Quality
151008	14:09:17.5	РуСВС	10.17	8.8	5.12	No artifacts
151012A	06:30:45.2	GstLAL	8.56	9.6	2.01	Artifacts present
151116	22:41:48.7	PyCBC	4.77	9.0	1.24	No artifacts
161202	03:53:44.9	GstLAL	6.00	10.5	1.54	Artifacts can account for
161217	07:16:24.4	GstLAL	10.12	10.7	7.86	Artifacts can account for
170208	10:39:25.8	GstLAL	11.18	10.0	7.39	Artifacts present
170219	14:04:09.0	GstLAL	6.26	9.6	1.53	No artifacts
170405	11:04:52.7	GstLAL	4.55	9.3	1.44	Artifacts present
170412	15:56:39.0	GstLAL	8.22	9.7	4.36	Artifacts can account for
170423	12:10:45.0	GstLAL	6.47	8.9	1.17	No artifacts
170616	19:47:20.8	PyCBC	1.94	9.1	2.75	Artifacts present
170630	16:17:07.8	GstLAL	10.46	9.7	0.90	Artifacts present
170705	08:45:16.3	GstLAL	10.97	9.3	3.40	No artifacts
170720	22:44:31.8	GstLAL	10.75	13.0	5.96	Artifacts can account for

Estimation des paramètres

- modèles de formes d'ondes (post newtoniennes, effective one body, phénoménologique).
- masses, spins, déformabilité (paramètres intrinsèques), coordonnées célestes, distance de luminosité, orientation, temps et phase à la coalescence (paramètres extrinsèques)
- Méthode bayésienne:

Fonction de vraisemblance (bruit Gaussien):

$$\mathcal{L}(d|\vec{\lambda}) \propto \exp\left[-\frac{1}{2}\left(d - h(\vec{\lambda}), d - h(\vec{\lambda})\right)\right]$$

Fonction de probabilité des paramètres pour un modèle donné:

$$p(\vec{\lambda}|\vec{d}, M) = \frac{p(\vec{\lambda}|M)p(\vec{d}|\vec{\lambda}, M)}{p(\vec{d}|M)}$$

Estimation des paramètres

Event	$m_1/{ m M}_{\odot}$	$m_2/{ m M}_{\odot}$	${\cal M}/{ m M}_{\odot}$	$\chi_{ ext{eff}}$	$M_{ m f}/{ m M}_{\odot}$	a_{f}	$E_{\rm rad}/({\rm M}_{\odot}c^2)$	$\ell_{\text{peak}}/(\text{erg s}^{-1})$	$d_L/{\rm Mpc}$	Z.	$\Delta\Omega/deg^2$
GW150914	$35.6^{+4.8}_{-3.0}$	$30.6^{+3.0}_{-4.4}$	$28.6^{+1.6}_{-1.5}$	$-0.01\substack{+0.12\\-0.13}$	$63.1_{-3.0}^{+3.3}$	$0.69^{+0.05}_{-0.04}$	$3.1^{+0.4}_{-0.4}$	$3.6^{+0.4}_{-0.4} \times 10^{56}$	430^{+150}_{-170}	$0.09\substack{+0.03 \\ -0.03}$	179
GW151012	$23.3^{+14.0}_{-5.5}$	$13.6^{+4.1}_{-4.8}$	$15.2^{+2.0}_{-1.1}$	$0.04^{+0.28}_{-0.19}$	$35.7^{+9.9}_{-3.8}$	$0.67^{+0.13}_{-0.11}$	$1.5^{+0.5}_{-0.5}$	$3.2^{+0.8}_{-1.7} \times 10^{56}$	1060^{+540}_{-480}	$0.21\substack{+0.09 \\ -0.09}$	1555
GW151226	$13.7^{+8.8}_{-3.2}$	$7.7^{+2.2}_{-2.6}$	$8.9^{+0.3}_{-0.3}$	$0.18\substack{+0.20 \\ -0.12}$	$20.5^{+6.4}_{-1.5}$	$0.74^{+0.07}_{-0.05}$	$1.0^{+0.1}_{-0.2}$	$3.4^{+0.7}_{-1.7} \times 10^{56}$	440^{+180}_{-190}	$0.09\substack{+0.04 \\ -0.04}$	1033
GW170104	$31.0^{+7.2}_{-5.6}$	$20.1^{+4.9}_{-4.5}$	$21.5^{+2.1}_{-1.7}$	$-0.04\substack{+0.17\\-0.20}$	$49.1^{+5.2}_{-3.9}$	$0.66\substack{+0.08\\-0.10}$	$2.2^{+0.5}_{-0.5}$	$3.3^{+0.6}_{-0.9} \times 10^{56}$	960_{-410}^{+430}	$0.19\substack{+0.07 \\ -0.08}$	924
GW170608	$10.9^{+5.3}_{-1.7}$	$7.6^{+1.3}_{-2.1}$	$7.9^{+0.2}_{-0.2}$	$0.03^{+0.19}_{-0.07}$	$17.8^{+3.2}_{-0.7}$	$0.69^{+0.04}_{-0.04}$	$0.9^{+0.0}_{-0.1}$	$3.5^{+0.4}_{-1.3} \times 10^{56}$	320^{+120}_{-110}	$0.07\substack{+0.02 \\ -0.02}$	396
GW170729	$50.6^{+16.6}_{-10.2}$	$34.3^{+9.1}_{-10.1}$	$35.7^{+6.5}_{-4.7}$	$0.36^{+0.21}_{-0.25}$	$80.3^{+14.6}_{-10.2}$	$0.81^{+0.07}_{-0.13}$	$4.8^{+1.7}_{-1.7}$	$4.2^{+0.9}_{-1.5} \times 10^{56}$	2750^{+1350}_{-1320}	$0.48^{+0.19}_{-0.20}$	1033
GW170809	$35.2^{+8.3}_{-6.0}$	$23.8\substack{+5.2\\-5.1}$	$25.0^{+2.1}_{-1.6}$	$0.07^{+0.16}_{-0.16}$	$56.4^{+5.2}_{-3.7}$	$0.70\substack{+0.08\\-0.09}$	$2.7^{+0.6}_{-0.6}$	$3.5^{+0.6}_{-0.9} \times 10^{56}$	990^{+320}_{-380}	$0.20\substack{+0.05\\-0.07}$	340
GW170814	$30.7^{+5.7}_{-3.0}$	$25.3\substack{+2.9\\-4.1}$	$24.2^{+1.4}_{-1.1}$	$0.07^{+0.12}_{-0.11}$	$53.4_{-2.4}^{+3.2}$	$0.72^{+0.07}_{-0.05}$	$2.7^{+0.4}_{-0.3}$	$3.7^{+0.4}_{-0.5} \times 10^{56}$	580^{+160}_{-210}	$0.12\substack{+0.03 \\ -0.04}$	87
GW170817	$1.46^{+0.12}_{-0.10}$	$1.27^{+0.09}_{-0.09}$	$1.186^{+0.001}_{-0.001}$	$0.00\substack{+0.02\\-0.01}$	≤ 2.8	≤ 0.89	≥ 0.04	$\geq 0.1 \times 10^{56}$	40^{+10}_{-10}	$0.01\substack{+0.00\\-0.00}$	16
GW170818	$35.5^{+7.5}_{-4.7}$	$26.8\substack{+4.3\\-5.2}$	$26.7^{+2.1}_{-1.7}$	$-0.09\substack{+0.18\\-0.21}$	$59.8_{-3.8}^{+4.8}$	$0.67^{+0.07}_{-0.08}$	$2.7^{+0.5}_{-0.5}$	$3.4^{+0.5}_{-0.7} \times 10^{56}$	1020^{+430}_{-360}	$0.20\substack{+0.07 \\ -0.07}$	39
GW170823	$39.6^{+10.0}_{-6.6}$	$29.4_{-7.1}^{+6.3}$	$29.3^{+4.2}_{-3.2}$	$0.08\substack{+0.20\\-0.22}$	$65.6^{+9.4}_{-6.6}$	$0.71\substack{+0.08 \\ -0.10}$	$3.3^{+0.9}_{-0.8}$	$3.6^{+0.6}_{-0.9} \times 10^{56}$	1850^{+840}_{-840}	$0.34^{+0.13}_{-0.14}$	1651

Estimation des paramètres

Event	$m_1/{ m M}_{\odot}$	$m_2/{ m M}_{\odot}$	${\cal M}/M_{\odot}$	$\chi_{ m eff}$	$M_{\rm f}/{ m M}_{\odot}$	a_{f}	$E_{\rm rad}/({\rm M}_{\odot}c^2)$	$\ell_{\text{peak}}/(\text{erg s}^{-1})$	$d_L/{\rm Mpc}$	Z.	$\Delta\Omega/deg^2$
GW150914	$35.6^{+4.8}_{-3.0}$	$30.6^{+3.0}_{-4.4}$	$28.6^{+1.6}_{-1.5}$	$-0.01\substack{+0.12\\-0.13}$	$63.1_{-3.0}^{+3.3}$	$0.69^{+0.05}_{-0.04}$	$3.1^{+0.4}_{-0.4}$	$3.6^{+0.4}_{-0.4} \times 10^{56}$	430^{+150}_{-170}	$0.09^{+0.03}_{-0.03}$	179
GW151012	$23.3^{+14.0}_{-5.5}$	$13.6^{+4.1}_{-4.8}$	$15.2^{+2.0}_{-1.1}$	$0.04^{+0.28}_{-0.19}$	$35.7^{+9.9}_{-3.8}$	$0.67^{+0.13}_{-0.11}$	$1.5^{+0.5}_{-0.5}$	$3.2^{+0.8}_{-1.7} \times 10^{56}$	1060^{+540}_{-480}	$0.21\substack{+0.09\\-0.09}$	1555
GW151226	$13.7^{+8.8}_{-3.2}$	$7.7^{+2.2}_{-2.6}$	$8.9^{+0.3}_{-0.3}$	$0.18\substack{+0.20 \\ -0.12}$	$20.5^{+6.4}_{-1.5}$	$0.74^{+0.07}_{-0.05}$	$1.0^{+0.1}_{-0.2}$	$3.4^{+0.7}_{-1.7} \times 10^{56}$	440^{+180}_{-190}	$0.09\substack{+0.04\\-0.04}$	1033
GW170104	$31.0^{+7.2}_{-5.6}$	$20.1^{+4.9}_{-4.5}$	$21.5^{+2.1}_{-1.7}$	$-0.04\substack{+0.17\\-0.20}$	$49.1^{+5.2}_{-3.9}$	$0.66\substack{+0.08\\-0.10}$	$2.2^{+0.5}_{-0.5}$	$3.3^{+0.6}_{-0.9} \times 10^{56}$	960^{+430}_{-410}	$0.19\substack{+0.07 \\ -0.08}$	924
GW170608	$10.9^{+5.3}_{-1.7}$	$7.6^{+1.3}_{-2.1}$	$7.9^{+0.2}_{-0.2}$	$0.03^{+0.19}_{-0.07}$	$17.8^{+3.2}_{-0.7}$	$0.69^{+0.04}_{-0.04}$	$0.9^{+0.0}_{-0.1}$	$3.5^{+0.4}_{-1.3} \times 10^{56}$	320^{+120}_{-110}	$0.07\substack{+0.02 \\ -0.02}$	396
GW170729	$50.6^{+16.6}_{-10.2}$	$34.3^{+9.1}_{-10.1}$	$35.7^{+6.5}_{-4.7}$	$0.36^{+0.21}_{-0.25}$	$80.3^{+14.6}_{-10.2}$	$0.81\substack{+0.07 \\ -0.13}$	$4.8^{+1.7}_{-1.7}$	$4.2^{+0.9}_{-1.5} \times 10^{56}$	2750^{+1350}_{-1320}	$0.48^{+0.19}_{-0.20}$	1033
GW170809	$35.2\substack{+8.3\\-6.0}$	$23.8\substack{+5.2\\-5.1}$	$25.0^{+2.1}_{-1.6}$	$0.07^{+0.16}_{-0.16}$	$56.4_{-3.7}^{+5.2}$	$0.70\substack{+0.08\\-0.09}$	$2.7^{+0.6}_{-0.6}$	$3.5^{+0.6}_{-0.9} \times 10^{56}$	990^{+320}_{-380}	$0.20\substack{+0.05 \\ -0.07}$	340
GW170814	$30.7^{+5.7}_{-3.0}$	$25.3\substack{+2.9\\-4.1}$	$24.2^{+1.4}_{-1.1}$	$0.07^{+0.12}_{-0.11}$	$53.4_{-2.4}^{+3.2}$	$0.72^{+0.07}_{-0.05}$	$2.7^{+0.4}_{-0.3}$	$3.7^{+0.4}_{-0.5} \times 10^{56}$	580^{+160}_{-210}	$0.12\substack{+0.03 \\ -0.04}$	87
GW170817	$1.46^{+0.12}_{-0.10}$	$1.27^{+0.09}_{-0.09}$	$1.186^{+0.001}_{-0.001}$	$0.00^{+0.02}_{-0.01}$	≤ 2.8	≤ 0.89	≥ 0.04	$\geq 0.1 \times 10^{56}$	40^{+10}_{-10}	$0.01\substack{+0.00\\-0.00}$	16
GW170818	$35.5^{+7.5}_{-4.7}$	$26.8^{+4.3}_{-5.2}$	$26.7^{+2.1}_{-1.7}$	$-0.09\substack{+0.18\\-0.21}$	$59.8_{-3.8}^{+4.8}$	$0.67^{+0.07}_{-0.08}$	$2.7^{+0.5}_{-0.5}$	$3.4^{+0.5}_{-0.7} \times 10^{56}$	1020_{-360}^{+430}	$0.20\substack{+0.07\\-0.07}$	39
GW170823	$39.6^{+10.0}_{-6.6}$	$29.4_{-7.1}^{+6.3}$	$29.3^{+4.2}_{-3.2}$	$0.08^{+0.20}_{-0.22}$	$65.6^{+9.4}_{-6.6}$	$0.71\substack{+0.08 \\ -0.10}$	$3.3^{+0.9}_{-0.8}$	$3.6^{+0.6}_{-0.9} \times 10^{56}$	1850^{+840}_{-840}	$0.34^{+0.13}_{-0.14}$	1651

Localisation

Détections dans O2 – alerte pour suivi EM

Détections dans 01 et 02 sans suivi EM

GW170817: observation multimessagère

- observée à la fois en ondes gravitationnelles et ondes électromagnétiques (gamma, rayons X, ultraviolet, optique, infrarouge, radio).
- Détection par Fermi GBM après 1.74 s
- Identification de la galaxie hôte NGC 4993 après 11h par le Swope Supernova Survey (SSS)

Aussi, limites supérieures sur...

- l'énergie gravitationelle sur l'objet résultant de GW170817
- l'emission gravitationnelle des pulsars connus et sur leur déformation équatoriale
- la densité d'énergie énergie en ondes gravitationnelles

Constraintes sur la densité d'énergie en OG

α	99% sens. band	Ω_{lpha}	95% UL	S6 UL	
0	$20-85.8~\mathrm{Hz}$	$(4.4 \pm 5.9) \times 10^{-8}$	$1.7 imes 10^{-7}$	$5.6 imes10^{-6}$	
$\frac{2}{3}$	$20-98.2~\mathrm{Hz}$	$(3.5 \pm 4.4) \times 10^{-8}$	$1.3 imes 10^{-7}$	_	
3	$20-305~\mathrm{Hz}$	$(3.7\pm6.5) imes10^{-9}$	$1.7 imes10^{-8}$	$3.5 imes 10^{-8}$	

33x meilleure que celle de initial LIGO/Virgo.

Contraintes sur l'objet résultant de GW170817

Limites supérieures sur les pulsars connus

Conclusion

- début de l'astronomie gravitationnelle (GW150914) et de l'atronomie multimessagers (GW170917)
- premier catalogue de sources d'ondes gravitationnelles de LIGO/Virgo (arxiv:1811.12907)
- Limites supérieures et contraintes sur certains modèles
- importantes résultats en physique fondamentales, astrophysiques et cosmologie (D. Buskulic)
- de nombreuse sources encore à découvrir, connues ou inconnue.

EXTRA

33

Spins

$$\chi_{\text{eff}} \equiv \left(\frac{m_1 \boldsymbol{\chi}_1 + m_2 \boldsymbol{\chi}_2}{m_1 + m_2}\right) \cdot \hat{\mathbf{L}}$$

