Les Trous Noirs Astrophysiques

Pierre-Olivier Petrucci Institut de Planétologie et d'Astrophysique de Grenoble

Outline

- Black holes: generalities
- The different types of astrophysical black holes
- Black hole environments (accretion disk, corona, jets,...)
- A promising future

Black Holes Generalities

Newton and the Gravitation Law

Newton and the Gravitation Law

Escape Velocity

The escape velocity can be computed from the Newton theory:

$$v_{esc} = \sqrt{2\mathcal{G}}\sqrt{\frac{M}{R}}$$

Escape Velocity

The escape velocity can be computed from the Newton theory:

$$v_{esc} = \sqrt{2\mathcal{G}}\sqrt{\frac{M}{R}}$$

Escape Velocity

The escape velocity can be computed from the Newton theory:

$$v_{esc} = \sqrt{2\mathcal{G}} \sqrt{\frac{M}{R}}$$

Numerical application - for the Earth:

M_{earth}=6 10²⁴ kg, R_{earth}= 6400 km $\Rightarrow v_{esc} = 11$ km/s

- for the sun:

M_{sun}=2 10³⁰ kg, R_{sun}= 700 000 km $\Rightarrow v_{esc} = 615$ km/s

Black Hole Concept

An astrophysical object of mass M has a escape velocity $v_{esc}=c$ if its radius R is smaller than

$$v_{esc} = \sqrt{2\mathcal{G}}\sqrt{\frac{M}{R}}$$

 $\implies R < R_{lim} = \frac{2\mathcal{G}}{c^2}M = 2R_g$

R_{lim}=Schwarzschild radius R_g=gravitationnal radius

(same limit found from GR equations)

Black Hole Concept

An astrophysical object of mass M has a escape velocity $V_{esc}=c$ if its radius R is smaller than

$$v_{esc} = \sqrt{2\mathcal{G}}\sqrt{\frac{M}{R}}$$

Then even light cannot escape !

Numerical application

- ➡ for the Earth, $R_{lim} = 9$ mm
- ➡ for the Sun, $R_{lim} = 3$ km

$$R < R_{lim} = \frac{2\mathcal{G}}{c^2}M = 2R_g$$

R_{lim}=Schwarzschild radius R_g=gravitationnal radius

(same limit found from GR equations)

To lift a masse m at a height h above a celestial body of radius R and mass M, we need to provide:

To lift a masse m at a height h above a celestial body of radius R and mass M, we need to provide:

$$F_{grav} = \frac{\mathcal{G}Mm}{R^2}$$
$$E_{grav} = F_{grav}h = \frac{R_{lim}}{2R}\frac{h}{R}mc^2$$

To lift a masse m at a height h above a celestial body of radius R and mass M, we need to provide:

$$F_{grav} = \frac{\mathcal{G}Mm}{R^2}$$
$$E_{grav} = F_{grav}h = \frac{R_{lim}}{2R}\frac{h}{R}mc^2$$

Numerical applications: m=1kg, h=1m

- $E_{grav} = 10$ Joules on Earth
- $E_{grav} = 300$ Joules on the Sun

For a black hole R=R_{lim}:

• $E_{grav} = 10^{12}$ Joules on a black hole of 10 M_{sun}

To lift a masse m at a height h above a celestial body of radius R and mass M, we need to provide:

The more compact the object (R→Rlim) the larger Egrav! 210 10 Some astrophysical objects radiate a so large luminosity that the presence of a black hole appears very likely!

• $E_{grav} = 10^{12}$ Joules on a black hole of 10 M_{sun}

Rotating Black Hole

A rotating BH is smaller than a non rotating one...

The more the BH rotates, the larger E_{grav}!

Funny effects...

Gravitational lensing

Funny effects...

Gravitational lensing

Amplified close to a black hole

Funny effects...

Gravitational lensing

Amplified close to a black hole

A wrong Idea...

Black hole does not always mean extreme density

A wrong Idea...

Black hole does not always mean extreme density

A wrong Idea...

Black hole does not always mean extreme density

The Different Types of Astrophysical Black Holes

Two Mainstrypses of Black holes

Two Mainstr Types of Black holes

Two Mainstr Types of Black holes

Two Mainstr Jynges "Of Black holes

Two Mainstr Jynges of Black holes

- Binary system black hole + (donor) star
- The matter of the star spirals around the black hole
- Large amount of energy released at high energy, close to the black hole

Two Mainstr Jynges of Black holes

Stellar mass BH

Origin: Final

product of dead

stars

- Binary system black hole + (donor) star
- The matter of the star spirals around the black hole
- Large amount of energy released at high energy, close to the black hole
- Part of the matter feeds the black hole but part of it is ejected

Two Mainstrypses of Black holes

Two Mainstrypes of Black holes

Two Mainstrypes of Black holes

• Most of the galaxies have a super massive black hole in their center

Two Mainstrypes, of Black holes

- Most of the galaxies have a super massive black hole in their center
- 10% of them have a strongly luminous nucleus (L_{milky way} in region of the size of the solar system): AGN

Two Mainstrypes of Black holes

- Most of the galaxies have a super massive black hole in their center
- 10% of them have a strongly luminous nucleus (L_{milky way} in region of the size of the solar system): AGN
- Large amount of energy released at high energy, close to the black hole

Two Mainstrypes of Black holes

- Most of the galaxies have a super massive black hole in their center
- 10% of them have a strongly luminous nucleus (L_{milky way} in region of the size of the solar system): AGN
- Large amount of energy released at high energy, close to the black hole
- Part of the matter feeds the black hole but part of it is ejected

Two Mainstrypses of Black holes

Two Mainstrypes of Black holes

Intermediate mass black holes. Their existence is still uncertain

Fiducial numbers

General idea:

- 1. Observe something which rotates
- 2. Determine its velocity v
- 3. Determine the radius R of its orbit
- 4. Deduce the mass of the massive central object using a formula M(v,R)

Body in circular orbit of radius **R** around an object of mass **M** moves at the **Keplerian velocity** $V_K = \sqrt{\frac{\mathcal{G}M}{R}}$

(Rem: see talk for mass measurement thanks to gravitational waves)

<u>3rd Kepler law</u>

(in case of circular orbit, no inclination, M_{star}≫M_{planet})

<u>3rd Kepler law</u>

(in case of circular orbit, no inclination, M_{star}≫M_{planet})

Numerical application: the case of the earth and the sun

Eart orbital period: 1 year Orbital radius: 150 millions of km

$$M_{sun} = 2 \ 10^{30} \ kg$$

Microquasars

In general, objects of similar mass, on inclined orbit, ... $M_1 \sin^3 i/(1 + M_2/M_1)^2 = P_{orb}V_{K,M_2}^3/2\pi \mathcal{G}$ Binary inclination $< M_1$

Microquasars

In general, objects of similar mass, on inclined orbit, ... $M_1 \sin^3 i/(1 + M_2/M_1)^2 = P_{orb}V_{K,M_2}^3/2\pi \mathcal{G}$ Binary inclination $< M_1$

How do we measure their mass? Microquasars

In general, objects of similar mass, on inclined orbit, ...

$$M_{1} \sin^{3} i / (1 + M_{2}/M_{1})^{2} = P_{orb} V_{K,M_{2}}^{3} / 2\pi \mathcal{G}$$

Binary inclination $< M_{1}$

How do we measure their mass? Microquasars

•SMBH in almost all galaxies...

•Super massive black holes already in place in the early universe

E.g. ULAS J1342 + 0928 has a $10^9 M_{sun}$ at a lookback time of 13 billions of years...

How do we measure their mass? Super Massive Black Holes Via direct measurements...

... e.g. Interferometry (GRAVITY)

How do we measure their mass? Super Massive Black Holes Via direct measurements...

... e.g. Interferometry (GRAVITY)

Sturm et al. (2018)

How do we measure their mass? Super Massive Black Holes Via direct measurements...

... e.g. Interferometry (GRAVITY)

How do we measure their mass? Super Massive Black Holes Phenomenological Relationship

- •BH mass related to bulge mass of the host galaxy
- •BH growth and galaxy evolutions are related

Astrophysical Black Hole Environment

- •From Radio to gamma-rays
- •Luminosity dominated by high energy bands
- •Several spectral components

Powerful Accretion

Powerful Accretion

- The accreted matter is heated to large temperature and radiates in X and gamma-rays
- The fastest variabilities are observed at high energy (X, gamma)

Powerful Accretion

Emitting regions are small, ~kms in microquasars, ~light-minutes (distance earth-Sun) in AGN

• Part of the X-ray emission is reflected on the accretion disk

- Part of the X-ray emission is reflected on the accretion disk
- The nature (ionisation, geometry) of the corona-disk is imprint in the reflection components

- Part of the X-ray emission is reflected on the accretion disk
- The nature (ionisation, geometry) of the corona-disk is imprint in the reflection components

observe

- Part of the X-ray emission is reflected on the accretion disk
- The nature (ionisation, geometry) of the corona-disk is imprint in the reflection components
- ... but also the relativistic effects when it is emitted close to the black hole

ray

black hole - disk system

Powerful Ejections

- •X-ray binaries show powerful ejection during their outburst
- •10% of active galaxies have powerful jets
- •Radio-Gamma ray emission indicating highly relativistic particles

Powerful Ejections

- •X-ray binaries show powerful ejection during their outburst
- •10% of active galaxies have powerful jets
- •Radio-Gamma ray emission indicating highly relativistic particles

➡ talk by J. Ferreira

Superluminal motions

Radio galaxie M87 1994 1995 1996 1997 1998 6.0c 5.5c 6.1c 6.0c

Microquasar GRS 1915+105 March 27 April 03 April 09 April 16 April 23 April 27

1.7c

Superluminal motions

Projection effect when material moves close to speed of light close to the line of sight

Smooth Winds

•Blueshifted absorption lines signature of outflowing material at 1000s to 10 000s of km/s

•Could have strong influence on the compact object evolution

Anatomy of an AGN in NGC 5548

Anatomy of an AGN in NGC 5548

•Same physical components but on different (spatial/temporal) scales

- •Same physical components but on different (spatial/temporal) scales
- •Microquasars evolve from quiescent to luminous states (outburst)

- •Same physical components but on different (spatial/temporal) scales
- •Microquasars evolve from quiescent to luminous states (outburst)
- •Accretion-Ejection properties vary during the outburst

- •1 sec. of a microquasar lifetime corresponds to month/years of an AGN lifetime...
- AGN could be different snapshots of microquasars evolution during outburst

A Promising Future

- The SMBH of our Milky Way
 - Multi wavelength observation of its environment
 - ➡ talk by M. Clavel
 - GRAVITY on VLTI
 - ➡ talk by K. Perraut
- GRAVITY, XMM, NuSTAR,... currently at work!

- New instruments (a few examples):
 - Gravitational waves experiments open a new window to learn about BH properties in the Universe see tomorrow's talk

- New instruments (a few examples):
 - Event Horizon Telescope (radio)

• Spatial resolution to resolve the event horizon of close SMBH

- Targets: SMBH of our Milky Way, Messier 87
- Goal: direct image of the BH shadow...

- New instruments (a few examples):
 - Event Horizon Telescope (radio)

• Spatial resolution to resolve the event horizon of close SMBH

- Targets: SMBH of our Milky Way, Messier 87
- Goal: direct image of the BH shadow...

- New instruments (a few examples):
 - Extremely Large Telescope (Optical/IR)

- Large collecting area
- Targets: Spectroscopy of large samples of high-z AGN
- •Goal: understand the formation of the SMBH
- First light: 2024

- New instruments (a few examples):
 - Athena satellite (X-ray)

- Large collecting area, high spatial, spectral and timing resolution
- Targets: High-z AGN
- Goal: understand the formation of the SMBH.
- First light: 2030...

Stay Tuned! Thanks!