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Dwarf novae
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White dwarf
Solar type star

Accretion disk

Dwarf novae are ideal to study accretion : 
- emission in the visible, UV 
- access to structure of the disk via eclipse mapping   
- high variability with time scales going from seconds to 

months 
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Variability in dwarf novae (DNe)

Luminosity coming from the 
accretion in the disk.  

(Shakura & Sunyaev 1973)



Historical framework : Turbulent/viscous accretion

Accretion disk

Angular momentum transport

CompanionWD

Accretion
turbulence

Turbulent transport modeled as a viscous transport 
 (Shakura & Sunyaev 1973)
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νeff = αcsH
where turbulence is supposedly due to MRI. 

 (Balbus & Hawley 1991)
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Disk instability model (DIM)
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S-curve from the DIM
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Eruptive state ⍺ ~ 0.1  
(Kotko & Lasota 2012) 

Quiescent state ⍺ ~ 0.01 
(Cannizzo et al. 2012)

tvis =
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H )

2
ttherm =

1
αΩ
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Disk instability model (DIM)
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S-curve from the DIM
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Eruptive state ⍺ ~ 0.1  
(Kotko & Lasota 2012) 

Quiescent state ⍺ ~ 0.01  
(Cannizzo et al. 2012)
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Can MRI give these values of ⍺ ?
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Shearing box simulations

Compute ⍺ from the simulations !!
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Magnetic configuration

Bz

Zero Net Flux (ZNF) Net Flux 

Bz
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Magnetic configuration

Bz Bz

⍺ does not depend on Bz 
(Hawley et al. 1996,Simon et al. 2012)

⍺ depends on Bz 
(Hawley et al. 1995)

Zero Net Flux (ZNF) Net Flux 
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 1) Zero Net Flux simulations

2) Net Flux simulations

3) Disk-wind model

Overview
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 1) Zero Net Flux simulations

2) Net Flux simulations

3) Disk-wind model

Overview
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Do not match observational light curves !

Light curves from Zero Net Flux simulations

Using  
⍺~0.1 for eruptive state 

  ⍺~0.01 for quiescent state

Using ⍺ from simulations 
(Hirose et al. 2014, Scepi et al. 

2018a)

Coleman et al. 2016

Coleman et al. 2016
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Resistive cold branch
Scepi et al. 2018a

When we include resistivity MRI is quenched in the quiescent state (as predicted by 
Gammie & Menou 1998). 

Yet, there is observational evidence that DNe in quiescence accrete (Mukai et al 2017).
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 1) Zero Net Flux simulations

2) Net Flux simulations

3) Disk-wind model

Overview
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Net flux simulations

Accretion disk
Transport of angular momentum

CompanionWD

Accretion turbulence

·MRϕ
·M =

Mass accretion rate due 
to turbulent transport.

{



 16

Outflows

Accretion disk
Transport of angular momentum

CompanionWD

Accretion turbulence
outflows

·MRϕ
·Mzϕ

{ {·M = +
Mass accretion rate due 
to turbulent transport.

Mass accretion rate due 
to wind-driven transport.



Turbulent VS wind-driven accretion
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Eruptive state dominated 
by viscous accretion 

Quiescent state 
dominated by the wind-

driven accretion

Scepi et al. 2018b



A new framework

 18

Accretion disk

Transport of angular momentum

CompanionWD

Accretion turbulence

outflows

Disk with a wind will not 
behave as an ⍺-disk.

Need to review observational 
constraints with a disk-wind 

model.

Accretion disk

Angular momentum transport

CompanionWD

Accretion
turbulence
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 1) Zero Net Flux simulations

2) Net Flux simulations

3) Disk-wind model

Overview
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A new disk-wind instability model

Accretion disk
Transport of angular momentum

CompanionWD

Accretion turbulence
outflows

We used prescriptions on   

from our simulations to construct a new DIM.  
We used a fixed magnetic field configuration.

α(β), q(β)
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B dipolar 
Stable case

·Mexternal = 3 × 1017 g s−1, Rout = 2 × 1010 cm

Scepi et al. 2018c in prep
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Scepi et al. 2019 in prep

·Mexternal = 1 × 1016 g s−1, Rout = 2 × 1010 cm

B dipolar 
Unstable case

Scepi et al. 2018c in prep
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Observations vs Model

Scepi et al. 2018c in prep
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For a dipolar moment of ~1030 G cm3, 
light curves are very similar to that of 

DNe!

However, we used a fixed magnetic 
field. We need to compute the 

evolution of the magnetic field. 



Conclusions
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• Turbulent MRI transport alone cannot explain the 
behavior of DNe  

• Net Flux simulations show that outflows transport angular 
momentum very efficiently in the quiescent state

• Taking into account turbulent and wind-driven transport, we 
can reproduce light-curves of DNe



Thank you for your attention
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