

Observatoire des Sciences de l'Univers de Grenoble

HARD

de Grenoble

Accretion in dwarf novae

Nicolas Scepi

supervised by Guillaume Dubus and Geoffroy Lesur

Dautreppe, 4th of December 2018

Dwarf novae

Accretion disk

Solar type star

White dwarf

Dwarf novae are ideal to study accretion : emission in the visible, UV access to structure of the disk via eclipse mapping high variability with time scales going from seconds to months

Variability in dwarf novae (DNe)

Luminosity coming from the accretion in the disk. (Shakura & Sunyaev 1973)

З

Historical framework : Turbulent/viscous accretion

Turbulent transport modeled as a viscous transport (Shakura & Sunyaev 1973)

$$\nu_{\rm eff} = \alpha c_s H$$

where turbulence is supposedly due to MRI. (Balbus & Hawley 1991)

Disk instability model (DIM)

 $t_{\rm vis} = \frac{1}{\alpha \Omega} \left(\frac{R}{H}\right)^2$ *t*_{therm} $\alpha \Omega$

Eruptive state α ~ 0.1 (Kotko & Lasota 2012) Ouiescent state α ~ 0.01 (Cannizzo et al. 2012)

S-curve from the DIM

Disk instability model (DIM)

S-curve from the DIM

$$t_{\rm vis} = \frac{1}{\alpha \Omega} \left(\frac{R}{H}\right)^2$$

Eruptive state α ~ 0.1 (Kotko & Lasota 2012) Quiescent state α ~ 0.01 (Cannizzo et al. 2012)

*t*_{therm}

 $\alpha\Omega$

Can MRI give these values of α ?

Shearing box simulations

Compute α from the simulations !!

Magnetic configuration

8

Zero Net Flux (ZNF)

Net Flux

Magnetic configuration

9

α does not depend on Bz (Hawley et al. 1996, Simon et al. 2012)

α depends on B_z (Hawley et al. 1995)

Zero Net Flux (ZNF)

Net Flux

1) Zero Net Flux simulations

2) Net Flux simulations

3) Disk-wind model

Overview

1) Zero Net Flux simulations

2) Net Flux simulations

3) Disk-wind model

Light curves from Zero Net Flux simulations

Coleman et al. 2016

Using $\alpha \sim 0.1$ for eruptive state $\alpha \sim 0.01$ for quiescent state

Coleman et al. 2016

Using α from simulations (Hirose et al. 2014, Scepi et al. 2018a)

Do not match observational light curves !

Resistive cold branch

When we include resistivity MRI is quenched in the quiescent state (as predicted by Gammie & Menou 1998).

Yet, there is observational evidence that DNe in quiescence accrete (Mukai et al 2017).

1) Zero Net K x simulations

2) Net Flux simulations

3) Disk-wind model

Net flux simulations

Outflows

Turbulent VS wind-driven accretion

17

Eruptive state dominated by viscous accretion

Quiescent state dominated by the winddriven accretion

A new framework

18

Disk with a wind will not behave as an α-disk.

Need to review observational constraints with a disk-wind model.

1) Zero Net Flux simulations

2) Net Flux simulations

3) Disk-wind model

A new disk-wind instability model

$$\partial_t \Sigma - \frac{2}{R_0} \partial_{R_0} \left(R_0^{1/2} \partial_{R_0} \left(\frac{\Sigma}{\Omega_0} R_0^{1/2} \alpha \left\langle c_s^2 \right\rangle_\rho \right) + \frac{2q}{\beta} \left\langle P_{\text{thermal mid}} \right\rangle \frac{R_0}{\Omega_0} \right) = 0$$

We used prescriptions on lpha(eta), q(eta)

from our simulations to construct a new DIM. We used **a fixed magnetic field configuration**.

B dipolar Stable case

 $\dot{M}_{\text{external}} = 3 \times 10^{17} \text{ g s}^{-1}, R_{\text{out}} = 2 \times 10^{10} \text{ cm}$

B dipolar Unstable case

 $\dot{M}_{\text{external}} = 1 \times 10^{16} \text{ g s}^{-1}, R_{\text{out}} = 2 \times 10^{10} \text{ cm}$

Observations vs Model

 $\mu_{30} = 0.1$ 10¹⁵ μ₃₀=0.3 10¹ g s⁻¹ 10 10¹ ຸ 10¹ ້າວ າ 10 10¹⁵ $\mu_{30} = 1$ 10¹ 8 8-10 $\mu_{30} = 2$ 10¹⁵ 10¹ s' -9 10 μ_{30} =2.5 10^{15} 12 80 0 20 0 20 40 60 40 60 80 days days

For a dipolar moment of ~10³⁰ G cm³, light curves are very similar to that of DNe!

However, we used a fixed magnetic field. We need to compute the **evolution of the magnetic field**.

Scepi et al. 2018c in prep

Conclusions

Turbulent MRI transport alone cannot explain the behavior of DNe

•

ightarrow

Net Flux simulations show that outflows transport angular momentum very efficiently in the quiescent state

Taking into account turbulent and wind-driven transport, we can reproduce light-curves of DNe

Thank you for your attention