

Z' and W' gauge bosons in SU(2)xSU(2)xU(1) models: precision predictions for LHC

Mohammad Mahdi ALTAKACH

Supervised by: Ingo Schienbein, Haitham Zaraket, and Tomas Jezo

02/07/2019

Call for New Physics Beyond the SM

- The most successful theory in the history of physics:
 - Is a gauge theory: $SU(3)_C \otimes SU(2)_L \otimes U(1)_Y$
 - One massless (A) and three massive (Z, W^{\pm}) EW gauge bosons.
 - Higgs mechanism: Scalar SU(2)_L doublet breaks G₂₁ symmetry.

Call for New Physics Beyond the SM

- The most successful theory in the history of physics:
 - Is a gauge theory: $SU(3)_C \otimes SU(2)_L \otimes U(1)_Y$
 - One massless (A) and three massive (Z, W^{\pm}) EW gauge bosons.
 - Higgs mechanism: Scalar SU(2)_L doublet breaks G₂₁ symmetry.
- The most successful theory in the history of physics also:
 - 26 (unexplained) input parameters.
 - Not based on a simple gauge group
 - Far away from a theory of everything: No gravity.
 - Many problems: Dark matter/energy, BAU, neutrino masses etc.

Extended Gauge Group Models: G(221) Class

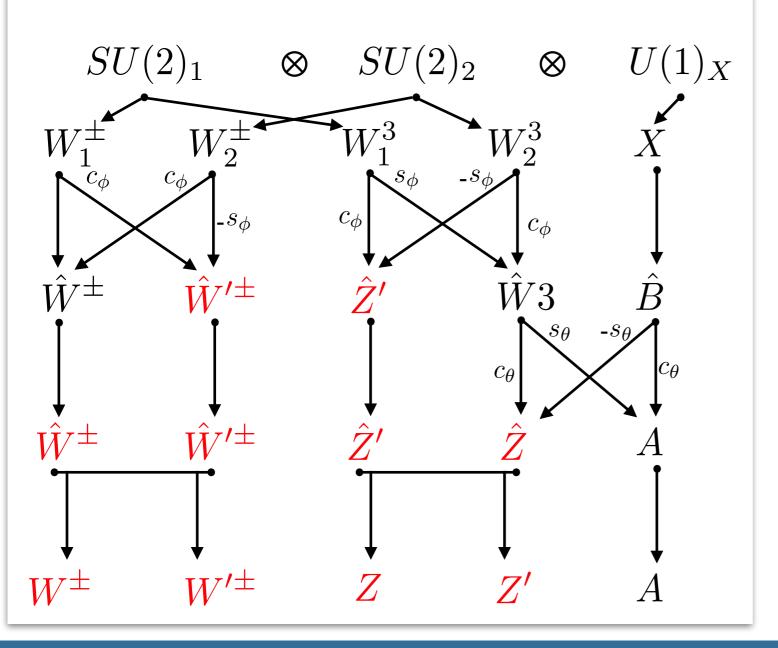
- The unification of the SM gauge group in a larger one (e.g E_6 , SO(10)) is theoretically very attractive.
- Additional subgroups (e.g U(I), SU(2)) may appear at intermediate stage.
- A new U(1) group factor predicts one additional gauge boson (Z).
- A new SU(2) leads to three new gauge bosons (Z', W').
- $SU(2)_1 \otimes SU(2)_2 \otimes U(1)_X = G_{221}$.

Symmetry Breaking Patterns

Charge Assignments

	BP	Model	$SU(2)_1$	$SU(2)_2$	$U(1)_X$
$SU(2)_1 = SU(2)_L$	BP-I	Left-right (LR)	$\left(egin{array}{c} u_{\scriptscriptstyle L} \ d_{\scriptscriptstyle L} \end{array} ight), \left(egin{array}{c} u_{\scriptscriptstyle L} \ e_{\scriptscriptstyle L} \end{array} ight)$	$\left(egin{array}{c} u_R \ d_R \end{array} ight), \left(egin{array}{c} u_R \ e_R \end{array} ight)$	$\frac{1}{6}$ for quarks, $-\frac{1}{2}$ for leptons.
		Lepto-phobic (LP)	$\left(egin{array}{c} u_{\scriptscriptstyle L} \ d_{\scriptscriptstyle L} \end{array} ight), \left(egin{array}{c} u_{\scriptscriptstyle L} \ e_{\scriptscriptstyle L} \end{array} ight)$	$\left(egin{array}{c} u_R \ d_R \end{array} ight)$	$\frac{1}{6}$ for quarks, $Y_{\text{\tiny SM}}$ for leptons.
		Hadro-phobic (HP)	$\left(egin{array}{c} u_{\scriptscriptstyle L} \ d_{\scriptscriptstyle L} \end{array} ight), \left(egin{array}{c} u_{\scriptscriptstyle L} \ e_{\scriptscriptstyle L} \end{array} ight)$	$\left(egin{array}{c} u_R \\ e_R \end{array} ight)$	Y_{SM} for quarks, $-\frac{1}{2}$ for leptons.
		Fermio-phobic (FP)	$\left(\begin{array}{c} u_{\scriptscriptstyle L} \\ d_{\scriptscriptstyle L} \end{array}\right), \left(\begin{array}{c} \nu_{\scriptscriptstyle L} \\ e_{\scriptscriptstyle L} \end{array}\right)$		$Y_{\scriptscriptstyle ext{SM}}$ for quarks, $Y_{\scriptscriptstyle ext{SM}}$ for leptons.
$U(I)_X = U(I)_Y$	BP-II	Un-unified (UU)	$\left(egin{array}{c} u_{\scriptscriptstyle L} \ d_{\scriptscriptstyle L} \end{array} ight)$	$\left(egin{array}{c} u_L \\ e_L \end{array} ight)$	$Y_{\text{\tiny SM}}$ for quarks. $Y_{\text{\tiny SM}}$ for leptons.
		Non-universal (NU)	$\left(\begin{array}{c} u_L \\ d_L \end{array} \right)_{1^{\mathrm{st}},2^{\mathrm{nd}}}, \left(\begin{array}{c} u_L \\ e_L \end{array} \right)_{1^{\mathrm{st}},2^{\mathrm{nd}}}$	$\left(\begin{array}{c} u_L \\ d_L \end{array}\right)_{3^{\mathrm{rd}}}, \left(\begin{array}{c} u_L \\ e_L \end{array}\right)_{3^{\mathrm{rd}}}$	$Y_{\scriptscriptstyle ext{SM}}$ for quarks. $Y_{\scriptscriptstyle ext{SM}}$ for leptons.

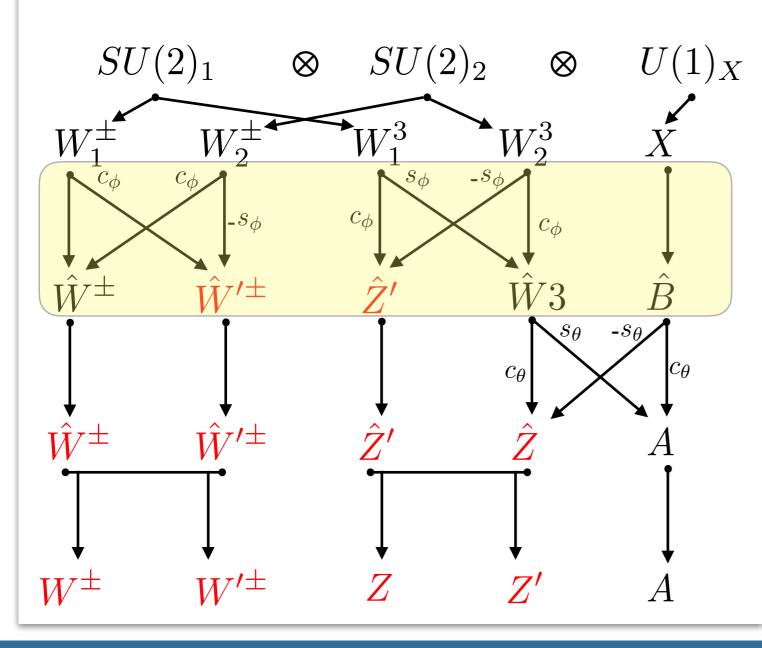
• Note that these models do not contain any new fermionic fields except for a potential ν_R


$$\mathcal{L}_{\phi} + \mathcal{L}_{H} \rightarrow \mathcal{L}_{\langle \phi \rangle} + \mathcal{L}_{\langle H \rangle} \equiv \mathcal{L}_{mass}$$

$$\phi \sim (2,\bar{2},0)$$
 $H \sim (1,2,\frac{1}{2})$

$$\mathcal{L}_{\phi} + \mathcal{L}_{H} \rightarrow \mathcal{L}_{\langle \phi \rangle} + \mathcal{L}_{\langle H \rangle} \equiv \mathcal{L}_{mass}$$

$$\phi \sim (2,\bar{2},0)$$
 $H \sim (1,2,\frac{1}{2})$

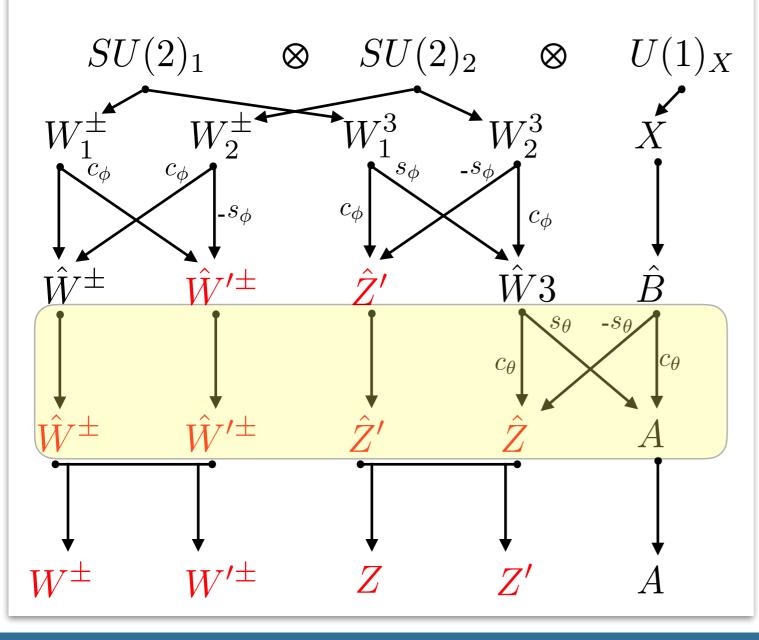

Mixing of the gauge bosons:

$$\mathcal{L}_{\phi} + \mathcal{L}_{H} \rightarrow \mathcal{L}_{\langle \phi \rangle} + \mathcal{L}_{\langle H \rangle} \equiv \mathcal{L}_{mass}$$

$$\phi \sim (2,\bar{2},0)$$
 $H \sim (1,2,\frac{1}{2})$

Mixing of the gauge bosons:

First Stage:


$$\mathcal{L}_{mass}^{1} = \frac{1}{2} M_{\hat{Z}'}^{2} \hat{Z}'_{\mu} \hat{Z}'^{\mu} + M_{\hat{W}'}^{2} \hat{W}'^{+}_{\mu} \hat{W}'^{-\mu}$$

Mixing angle: $t_{\phi} \equiv \frac{g_2}{g_1}$

$$\mathcal{L}_{\phi} + \mathcal{L}_{H} \rightarrow \mathcal{L}_{\langle \phi \rangle} + \mathcal{L}_{\langle H \rangle} \equiv \mathcal{L}_{mass}$$

$$\phi \sim (2,\bar{2},0)$$
 $H \sim (1,2,\frac{1}{2})$

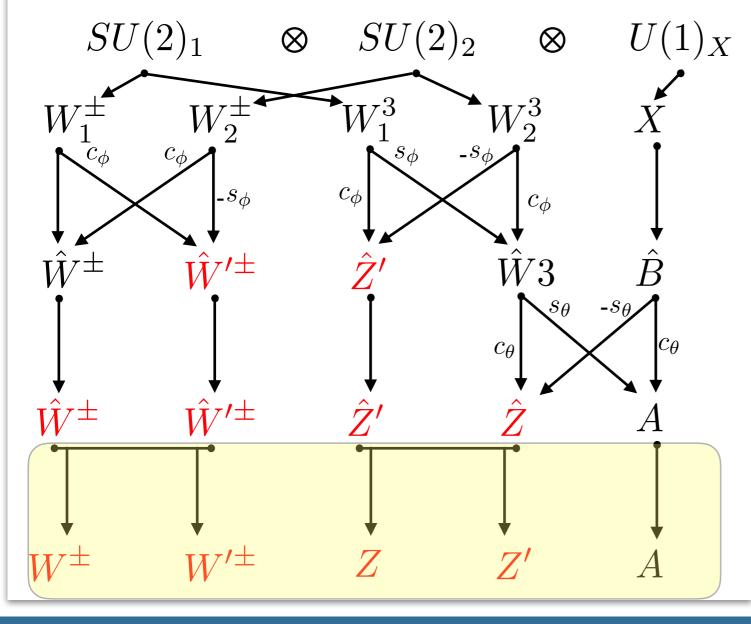
Mixing of the gauge bosons:

First Stage:

$$\mathcal{L}_{mass}^{1} = \frac{1}{2} M_{\hat{Z}'}^{2} \hat{Z}'_{\mu} \hat{Z}'^{\mu} + M_{\hat{W}'}^{2} \hat{W}'_{\mu}^{+} \hat{W}'^{-\mu}$$

Mixing angle: $t_{\phi} \equiv \frac{g_2}{g_1}$

Second Stage:


$$M_{\hat{Z}\hat{Z}'} = \begin{pmatrix} M_{\hat{Z}}^2 & \delta M_{\hat{Z}}^2 \\ \delta M_{\hat{Z}}^2 & M_{\hat{Z}'}^2 + \Delta M_{\hat{Z}'}^2 \end{pmatrix}$$

Mixing angle: $t_{\theta} \equiv \frac{g_Y}{g_L}$

$$\mathcal{L}_{\phi} + \mathcal{L}_{H} \rightarrow \mathcal{L}_{\langle \phi \rangle} + \mathcal{L}_{\langle H \rangle} \equiv \mathcal{L}_{mass}$$

$$\phi \sim (2,\bar{2},0)$$
 $H \sim (1,2,\frac{1}{2})$

Mixing of the gauge bosons:

First Stage:

$$\mathcal{L}_{mass}^{1} = \frac{1}{2} M_{\hat{Z}'}^{2} \hat{Z}'_{\mu} \hat{Z}'^{\mu} + M_{\hat{W}'}^{2} \hat{W}'^{+}_{\mu} \hat{W}'^{-\mu}$$

Mixing angle: $t_{\phi} \equiv \frac{g_2}{g_1}$

Second Stage:

$$M_{\hat{Z}\hat{Z}'} = \begin{pmatrix} M_{\hat{Z}}^2 & \delta M_{\hat{Z}}^2 \\ \delta M_{\hat{Z}}^2 & M_{\hat{Z}'}^2 + \Delta M_{\hat{Z}'}^2 \end{pmatrix}$$

Mixing angle: $t_{\theta} \equiv \frac{g_Y}{g_L}$

Masses:

$$M_Z^2 = M_{\hat{Z}}^2 - \frac{\delta M_{\hat{Z}}^4}{M_{\hat{Z}'}^2 - M_{\hat{Z}}^2 + \delta M_{\hat{Z}'}^2}$$

$$M_{Z'}^2 = M_{\hat{Z}'}^2 + \delta M_{\hat{Z}'}^2 + \frac{\delta M_{\hat{Z}}^4}{M_{\hat{Z}'}^2 - M_{\hat{Z}}^2 + \delta M_{\hat{Z}'}^2}$$

$$\mathcal{L}_{int} = \bar{f}_i i \gamma_\mu D^\mu f_i = \hat{W}_\mu^+ J^{+\mu} + \hat{W}_\mu^- J^{-\mu} + \hat{Z}_\mu J^{0\mu} + A_\mu J^\mu + \hat{W}_\mu^{'+} K^{+\mu} + \hat{W}_\mu^{'-} K^{-\mu} + \hat{Z}_\mu^\prime K^{0\mu} \,.$$

$$\mathcal{L}_{int} = \bar{f}_i i \gamma_\mu D^\mu f_i = \hat{W}_\mu^+ J^{+\mu} + \hat{W}_\mu^- J^{-\mu} + \hat{Z}_\mu J^{0\mu} + A_\mu J^\mu + \hat{W}_\mu^{'+} K^{+\mu} + \hat{W}_\mu^{'-} K^{-\mu} + \hat{Z}_\mu^{'} K^{0\mu} \,.$$

$$\begin{split} \mathcal{L}_{int} &= W_{\mu}^{+} \Big(J^{+\mu} - \frac{\delta M_{\hat{W}}^{2}}{M_{\hat{W}'}^{2}} K^{+\mu} \Big) + (+ \longleftrightarrow -) \\ &+ W_{\mu}'^{+} \Big(K^{+\mu} + \frac{\delta M_{\hat{W}}^{2}}{M_{\hat{W}'}^{2}} J^{+\mu} \Big) + (+ \longleftrightarrow -) \\ &+ Z_{\mu} \Big(J^{0\mu} - \frac{\delta M_{\hat{Z}}^{2}}{M_{\hat{Z}'}^{2}} K^{0\mu} \Big) \\ &+ Z_{\mu} \Big(K^{0\mu} + \frac{\delta M_{\hat{Z}}^{2}}{M_{\hat{Z}'}^{2}} J^{0\mu} \Big) \\ &+ A_{\mu} J^{\mu} \end{split}$$

$$\mathcal{L}_{int} = \bar{f}_i i \gamma_\mu D^\mu f_i = \hat{W}_\mu^+ J^{+\mu} + \hat{W}_\mu^- J^{-\mu} + \hat{Z}_\mu J^{0\mu} + A_\mu J^\mu + \hat{W}_\mu^{'+} K^{+\mu} + \hat{W}_\mu^{'-} K^{-\mu} + \hat{Z}_\mu^{'} K^{0\mu} \,.$$

$$\begin{split} \mathcal{L}_{int} &= W_{\mu}^{+} \Big(J^{+\mu} - \frac{\delta M_{\hat{W}}^{2}}{M_{\hat{W}'}^{2}} K^{+\mu} \Big) + (+ \longleftrightarrow -) \\ &+ W_{\mu}^{'+} \Big(K^{+\mu} + \frac{\delta M_{\hat{W}}^{2}}{M_{\hat{W}'}^{2}} J^{+\mu} \Big) + (+ \longleftrightarrow -) \\ &+ Z_{\mu} \Big(J^{0\mu} - \frac{\delta M_{\hat{Z}}^{2}}{M_{\hat{Z}'}^{2}} K^{0\mu} \Big) \\ &+ Z_{\mu} \Big(K^{0\mu} + \frac{\delta M_{\hat{Z}}^{2}}{M_{\hat{Z}'}^{2}} J^{0\mu} \Big) \\ &+ A_{\mu} J^{\mu} \end{split}$$

Mass eigenstates:

$$Z \equiv \hat{Z} - \frac{\delta M_{\hat{Z}}^2}{M_{\hat{Z}'}^2} \hat{Z}', \quad Z' \equiv \frac{\delta M_{\hat{Z}}^2}{M_{\hat{Z}'}^2} \hat{Z} + \hat{Z}'$$

$$\mathcal{L}_{int} = \bar{f}_i i \gamma_\mu D^\mu f_i = \hat{W}_\mu^+ J^{+\mu} + \hat{W}_\mu^- J^{-\mu} + \hat{Z}_\mu J^{0\mu} + A_\mu J^\mu + \hat{W}_\mu^{'+} K^{+\mu} + \hat{W}_\mu^{'-} K^{-\mu} + \hat{Z}_\mu^{'} K^{0\mu} \,.$$

$$\begin{split} \mathcal{L}_{int} &= W_{\mu}^{+} \left(J^{+\mu} - \frac{\delta M_{\hat{W}}^{2}}{M_{\hat{W}'}^{2}} K^{+\mu} \right) + (+ \longleftrightarrow -) \\ &+ W_{\mu}'^{+} \left(K^{+\mu} + \frac{\delta M_{\hat{W}}^{2}}{M_{\hat{W}'}^{2}} J^{+\mu} \right) + (+ \longleftrightarrow -) \\ &+ Z_{\mu} \left(J^{0\mu} - \frac{\delta M_{\hat{Z}}^{2}}{M_{\hat{Z}'}^{2}} K^{0\mu} \right) \\ &+ Z_{\mu}' \left(K^{0\mu} + \frac{\delta M_{\hat{Z}}^{2}}{M_{\hat{Z}'}^{2}} J^{0\mu} \right) \\ &+ A_{\mu} J^{\mu} \end{split}$$

Mass eigenstates:

$$Z \equiv \hat{Z} - \frac{\delta M_{\hat{Z}}^2}{M_{\hat{Z}'}^2} \hat{Z}', \quad Z' \equiv \frac{\delta M_{\hat{Z}}^2}{M_{\hat{Z}'}^2} \hat{Z} + \hat{Z}'$$

Model-independent effective Lagrangian

$$\mathcal{L}_{\mathrm{CC}}^{W'} = \frac{g_W}{\sqrt{2}} \left[\bar{u}_i \gamma^{\mu} \left(\left(C_{q,L}^{W'} \right)_{ij} P_L + \left(C_{q,R}^{W'} \right)_{ij} P_R \right) d_j \right.$$

$$+ \bar{\nu}_i \gamma^{\mu} \left(\left(C_{\ell,L}^{W'} \right)_{ij} P_L + \left(C_{\ell,R}^{W'} \right)_{ij} P_R \right) e_j \right] W'_{\mu} + h.c.$$

$$\mathcal{L}_{\mathrm{NC}}^{Z'} = \frac{g_W}{c_{\theta_W}} \left[\sum_{q} \bar{q}_i \gamma^{\mu} \left(\left(C_{q,L}^{Z'} \right)_{ij} P_L + \left(C_{q,R}^{Z'} \right)_{ij} P_R \right) q_j \right.$$

$$+ \sum_{\ell} \bar{\ell}_i \gamma^{\mu} \left(\left(C_{\ell,L}^{Z'} \right)_{ij} P_L + \left(C_{\ell,R}^{Z'} \right)_{ij} P_R \right) \ell_j \right] Z'_{\mu} + h.c.$$

• Couplings C given in the different G(221) models

Resummino

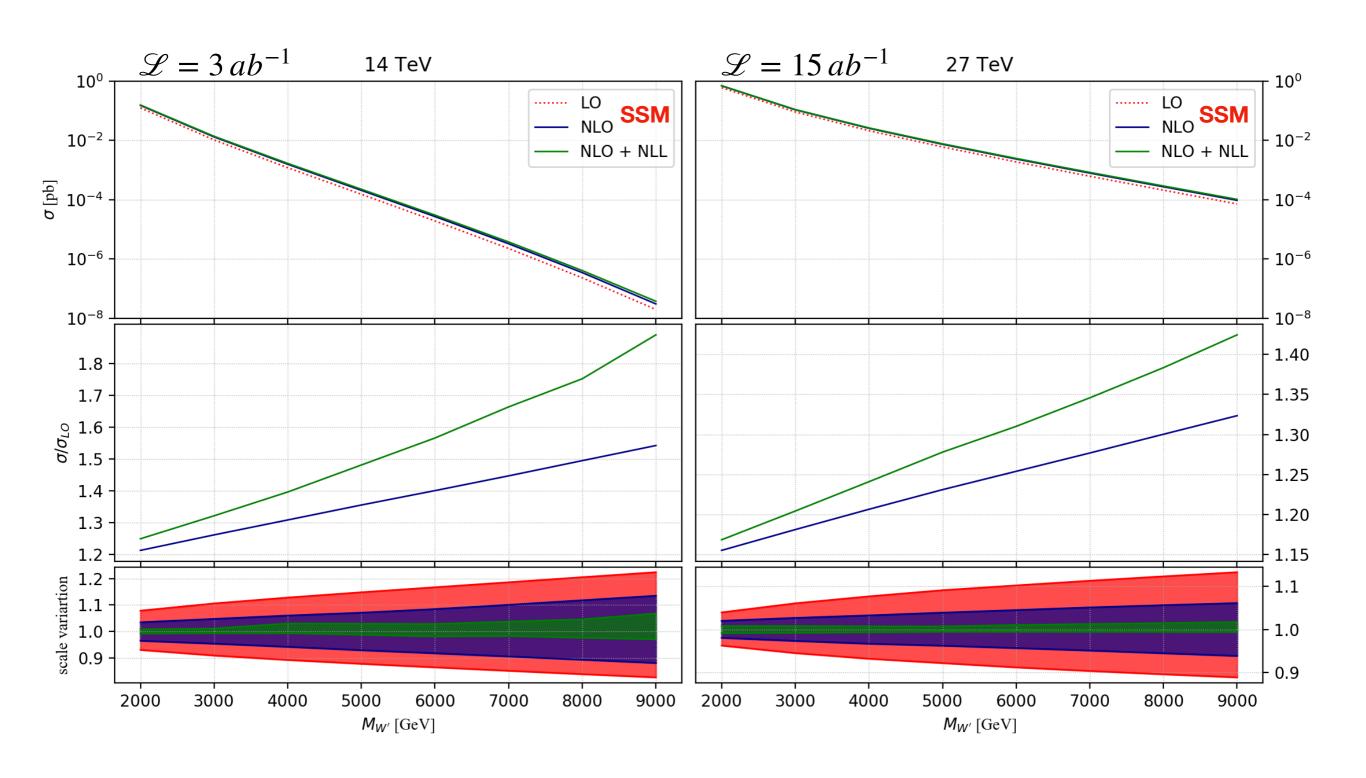
Precision prediction for pp \rightarrow W/W' \rightarrow IV process in **RESUMMINO**.

Resummino

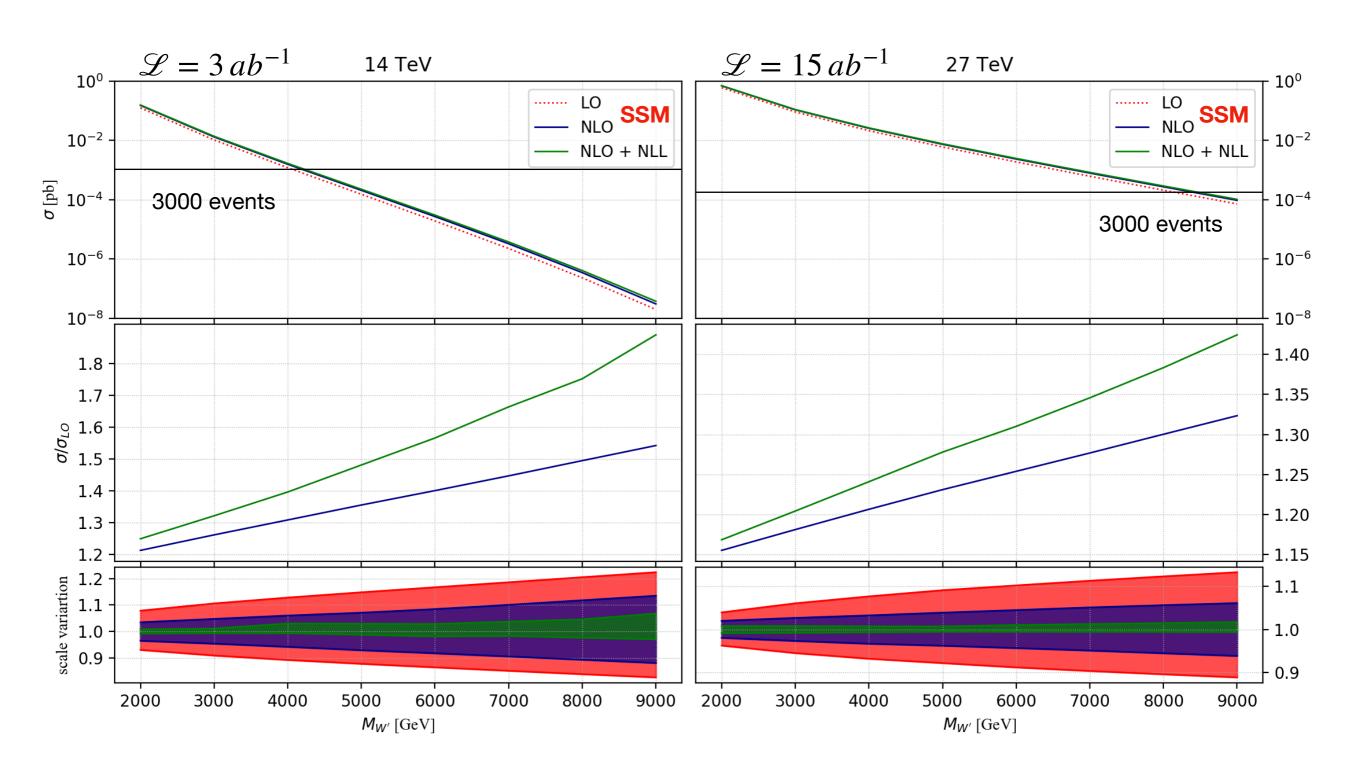
• Public code RESUMMINO implements soft-gluon resummation for:

- Z', gaugino and slepton pair production.
- Added the W' → Iv process.
- Present QCD resummation predictions for:
 - pp \rightarrow W/W' \rightarrow Iv and pp \rightarrow Z/Z' \rightarrow II.
 - Include the interferences.

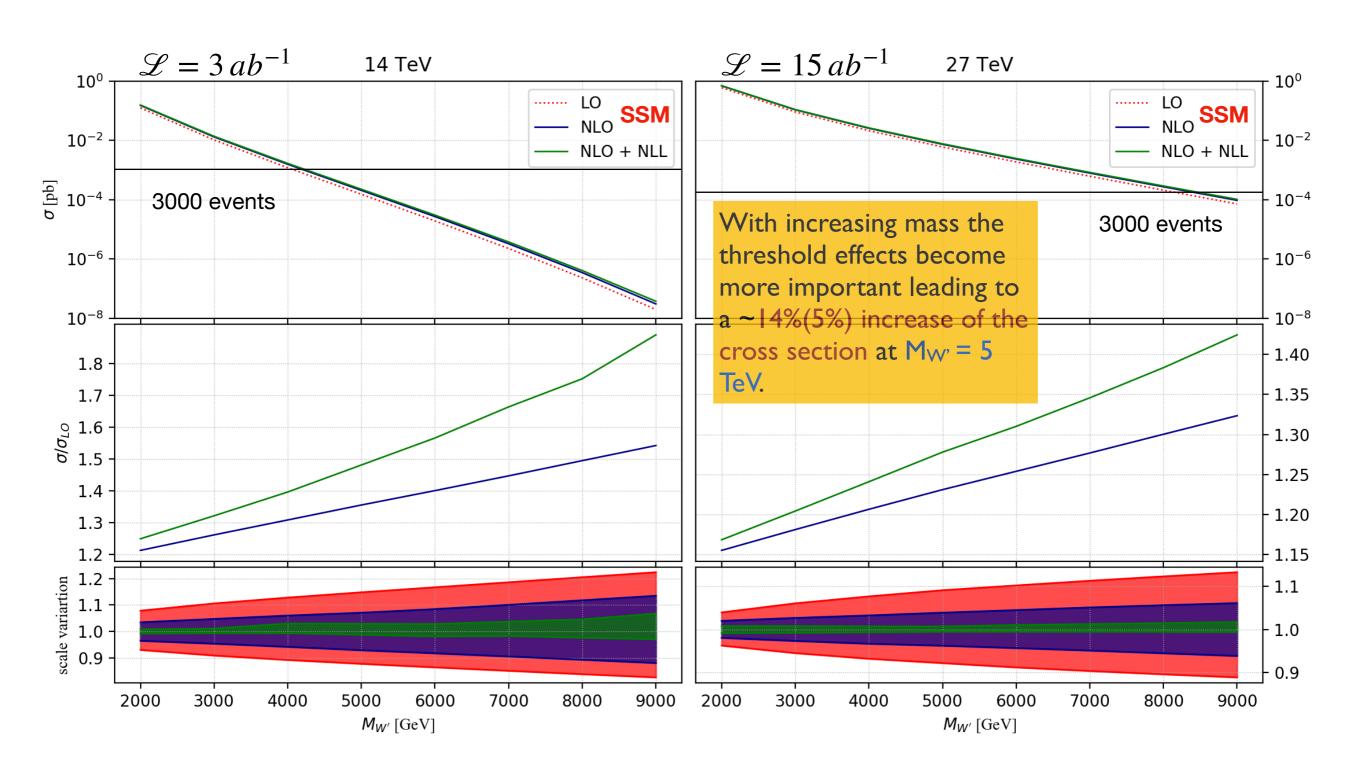
Resummino


• Public code RESUMMINO implements soft-gluon resummation for:

- Z', gaugino and slepton pair production.
- Added the W' → Iv process.
- Present QCD resummation predictions for:
 - pp \rightarrow W/W' \rightarrow Iv and pp \rightarrow Z/Z' \rightarrow II.
 - Include the interferences.
- Input parameters:
 - SSM : M_W


SSM:

Z' (W') have the same couplings to fermions as the Standard Model Z (W), width of the Z' (W') increases proportional to its mass.


- G(221) models: Un-Unified (UU) and Generation Non-Universal (NU): $M_{W'}$, $\tan \phi$
- CT14 PDFs at NLO including error sets at 90% C.L.

 W^{\prime} production cross sections at LHC14 and 27 at NLO+NLL in the SSM vs $M_{W^{\prime}}$

 W^{\prime} production cross sections at LHC14 and 27 at NLO+NLL in the SSM vs $M_{W^{\prime}}$

 W^{\prime} production cross sections at LHC14 and 27 at NLO+NLL in the SSM vs $M_{W^{\prime}}$

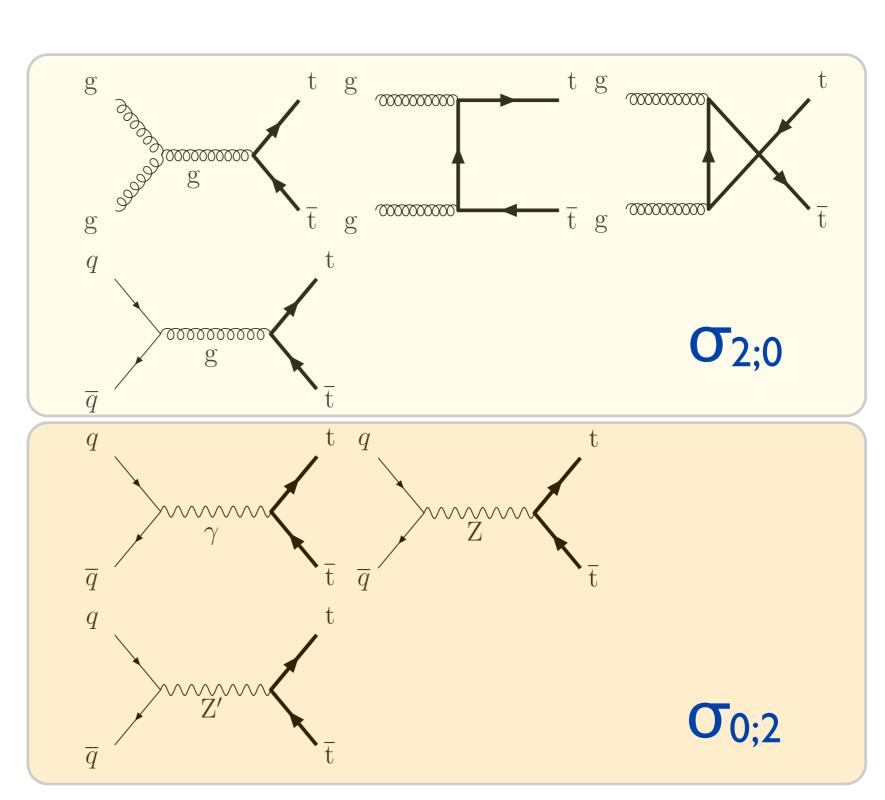
PBZp

EW top pair production at the LHC with Z' bosons including NLO
 QCD in POWHEG

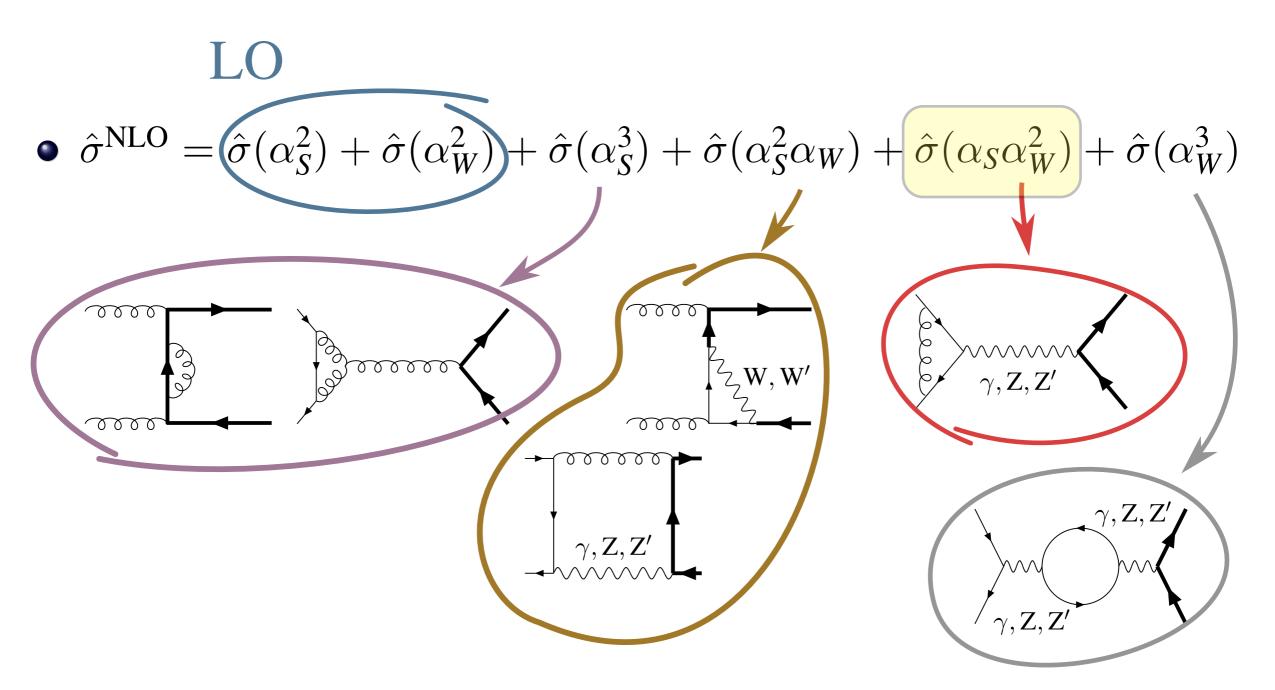
PBZp

- Calculation of NLO QCD corrections to EW top-pair production at the LHC in the presence of a Z' boson. [arXiv:1511.08185]
 - Z' boson with general (flavour diagonal) couplings to SM fermions.
 - Results are implemented in the POWHEG BOX MC event generator: code named PBZp (POWHEG BOX Z').
 - Standard Model and new physics interference effects taken into account.
 - QED singularities consistently subtracted.

LO subprocesses

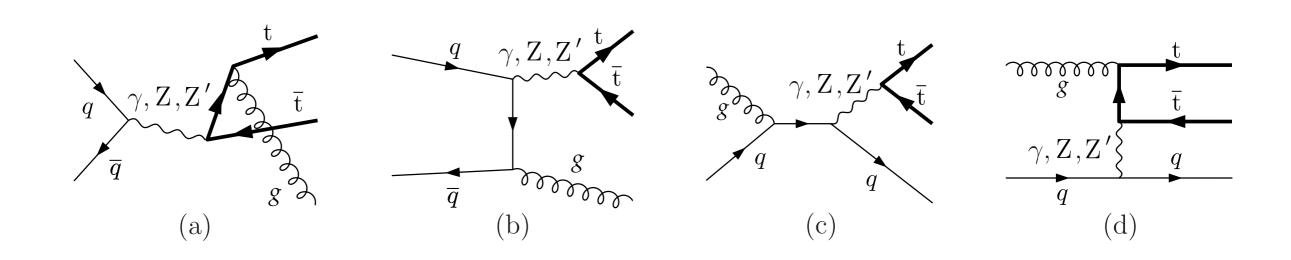

•
$$\hat{\sigma}^{\text{LO}} = \hat{\sigma}_{S}^{\text{LO}}(\alpha_{S}^{2}) + \hat{\sigma}_{W}^{\text{LO}}(\alpha_{W}^{2})$$

- SM
 - gg, $\mathcal{O}(\alpha_S^2)$:

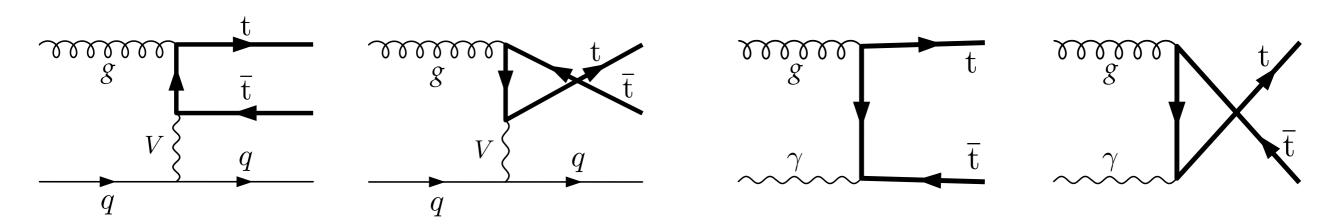

• $q\overline{q}$, $\mathcal{O}(\alpha_S^2)$:

 $ightharpoonup q\overline{q}, \mathcal{O}(\alpha_W^2)$:

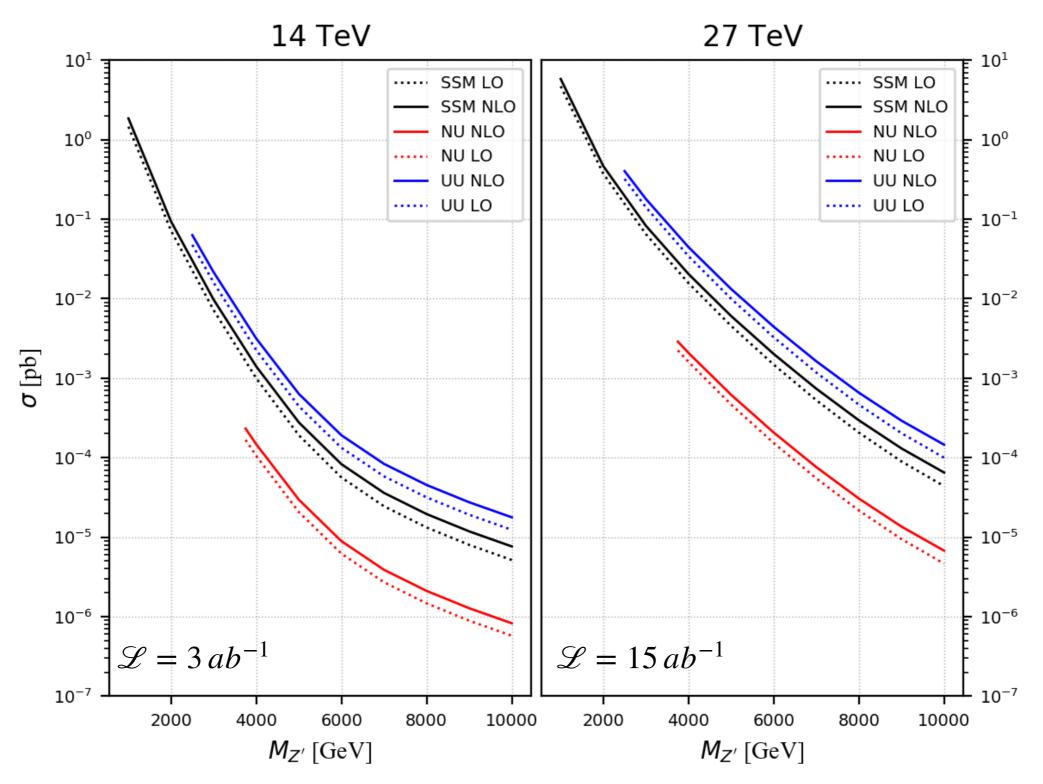
- beyond SM
 - $ightharpoonup q\overline{q}, \mathcal{O}(\alpha_W^2)$:



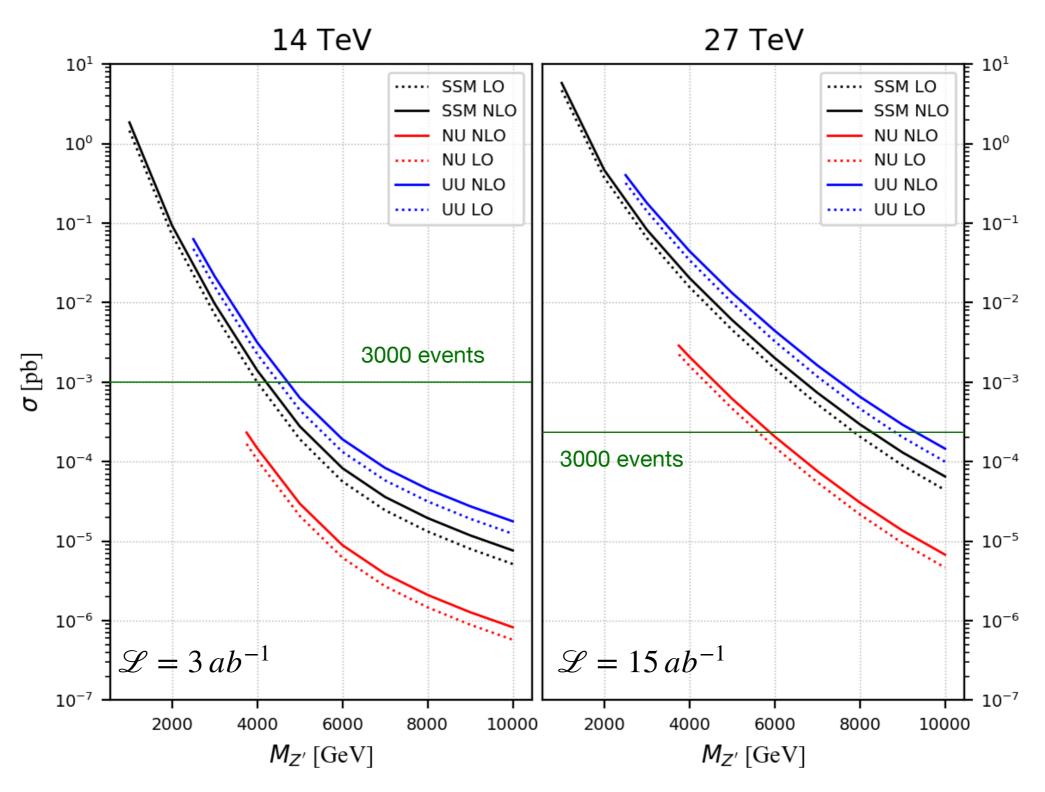
NLO virtual


- $\mathcal{O}(\alpha_S^3)$ not affected by the presence of Z'
- we calculate $\mathcal{O}(\alpha_S \alpha_W^2)$

NLO real corrections



- interferences of real and real diagrams
- new channel as compared to tree-level and 1-loop diagrams
- no loops, no UV divergences
- IR divergences, after integration over 1 particle phase space
 - ► soft (S) divergences: radiation of a soft gluon (a), (b)
 - ► initial state collinear (ISC) divergences: (b), (d)
 - no final state collinear (FSC) divergences


QED contribution

- The gq-channel has an initial state C-div. associated to a photon propagator
- For the mass factorization procedure need to introduce a photon PDF and have to include photon-initiated subprocesses
- This channel turns out to be numerically important

Z' production cross sections at LHC14 and 27 at NLO in the NU, UU, and SSM vs $M_{Z'}$

 Z^{\prime} production cross sections at LHC14 and 27 at NLO in the NU, UU, and SSM $\,$ vs $\,M_{Z^{\prime}}$

PBZWp

Goal:

- Extend PBZp (→ PBZWp) to include the pp → W/W' → tb process including NLO QCD corrections.
- Include flavour non-diagonal Z' and W' couplings.

Recola

- Recola: REcursive Computation of One-Loop Amplitudes
- EW and QCD amplitudes in SM at NLO.
- Based on recursive method for the tensor coefficient.
- Based on Collier library for tensor integrals [Denner, Dittmaier, Hofer; 1604.06792].
- Publicly available at: https://recola.hepforge.org.
- Recola2 [Denner, Lang, Uccirati; 1705.06053] for BSM.

Task List

• Validate Recola matrix elements and our use of those matrix elements in POWHEG-BOX:

Task List

- Validate Recola matrix elements and our use of those matrix elements in POWHEG-BOX:
 - Prepare a Recola model file (MF2) including Z' and W' bosons with non-diagonal flavour generic couplings.

Task List

 Validate Recola matrix elements and our use of those matrix elements in POWHEG-BOX:

Prepare a **Recola** model file (MF2) including Z' and W' bosons with non-diagonal flavour generic couplings.

- Validate Recola matrix elements and our use of those matrix elements in POWHEG-BOX:
 - Prepare a **Recola** model file (MF2) including Z' and W' bosons with non-diagonal flavour generic couplings.
 - Prepare a SSM UFO file (MF3).

- Validate Recola matrix elements and our use of those matrix elements in POWHEG-BOX:
 - Prepare a **Recola** model file (MF2) including Z' and W' bosons with non-diagonal flavour generic couplings.
 - Prepare a SSM UFO file (MF3).

- Validate Recola matrix elements and our use of those matrix elements in POWHEG-BOX:
 - Prepare a **Recola** model file (MF2) including Z' and W' bosons with non-diagonal flavour generic couplings.
 - Prepare a SSM UFO file (MF3).
 - Fix the Z' generic couplings in MF2 to MF3 couplings by comparing their production cross section in MG5.

- Validate Recola matrix elements and our use of those matrix elements in POWHEG-BOX:
 - Prepare a **Recola** model file (MF2) including Z' and W' bosons with non-diagonal flavour generic couplings.
 - Prepare a SSM UFO file (MF3).
 - Fix the Z' generic couplings in MF2 to MF3 couplings by comparing their production cross section in MG5.

- Validate Recola matrix elements and our use of those matrix elements in POWHEG-BOX:
 - Prepare a **Recola** model file (MF2) including Z' and W' bosons with non-diagonal flavour generic couplings.
 - Prepare a SSM UFO file (MF3).
 - Fix the Z' generic couplings in MF2 to MF3 couplings by comparing their production cross section in MG5.
 - Compare LO matrix elements between MF2 and MF3 in MG5 sampling the full phase space.

- Validate Recola matrix elements and our use of those matrix elements in POWHEG-BOX:
 - Prepare a **Recola** model file (MF2) including Z' and W' bosons with non-diagonal flavour generic couplings.
 - Prepare a SSM UFO file (MF3).
 - Fix the Z' generic couplings in MF2 to MF3 couplings by comparing their production cross section in MG5.
 - Compare LO matrix elements between MF2 and MF3 in MG5 sampling the full phase space.

- Validate Recola matrix elements and our use of those matrix elements in POWHEG-BOX:
 - Prepare a **Recola** model file (MF2) including Z' and W' bosons with non-diagonal flavour generic couplings.
 - Prepare a SSM UFO file (MF3).
 - Fix the Z' generic couplings in MF2 to MF3 couplings by comparing their production cross section in MG5.
 - Compare LO matrix elements between MF2 and MF3 in MG5 sampling the full phase space.
 - Compare MF2 LO matrix elements between Recola and MG5.

- Validate Recola matrix elements and our use of those matrix elements in POWHEG-BOX:
 - Prepare a **Recola** model file (MF2) including Z' and W' bosons with non-diagonal flavour generic couplings.
 - Prepare a SSM UFO file (MF3).
 - Fix the Z' generic couplings in MF2 to MF3 couplings by comparing their production cross section in MG5.
 - Compare LO matrix elements between MF2 and MF3 in MG5 sampling the full phase space.
 - Compare MF2 LO matrix elements between Recola and MG5.

- Validate Recola matrix elements and our use of those matrix elements in POWHEG-BOX:
 - Prepare a **Recola** model file (MF2) including Z' and W' bosons with non-diagonal flavour generic couplings.
 - Prepare a SSM UFO file (MF3).
 - Fix the Z' generic couplings in MF2 to MF3 couplings by comparing their production cross section in MG5.
 - Compare LO matrix elements between MF2 and MF3 in MG5 sampling the full phase space.
 - Compare MF2 LO matrix elements between Recola and MG5.
 - Compare Born amplitudes between Recola and PBZp.

- Validate Recola matrix elements and our use of those matrix elements in POWHEG-BOX:
 - Prepare a **Recola** model file (MF2) including Z' and W' bosons with non-diagonal flavour generic couplings.
 - Prepare a SSM UFO file (MF3).
 - Fix the Z' generic couplings in MF2 to MF3 couplings by comparing their production cross section in MG5.
 - Compare LO matrix elements between MF2 and MF3 in MG5 sampling the full phase space.
 - Compare MF2 LO matrix elements between Recola and MG5.
 - Compare Born amplitudes between Recola and PBZp.

- Validate Recola matrix elements and our use of those matrix elements in POWHEG-BOX:
 - Prepare a **Recola** model file (MF2) including Z' and W' bosons with non-diagonal flavour generic couplings.
 - Prepare a SSM UFO file (MF3).
 - Fix the Z' generic couplings in MF2 to MF3 couplings by comparing their production cross section in MG5.
 - Compare LO matrix elements between MF2 and MF3 in MG5 sampling the full phase space.
 - Compare MF2 LO matrix elements between Recola and MG5.
 - Compare Born amplitudes between Recola and PBZp.
 - Compare Virtual amplitudes between Recola and PBZp.

- Validate Recola matrix elements and our use of those matrix elements in POWHEG-BOX:
 - Prepare a **Recola** model file (MF2) including Z' and W' bosons with non-diagonal flavour generic couplings.
 - Prepare a SSM UFO file (MF3).
 - Fix the Z' generic couplings in MF2 to MF3 couplings by comparing their production cross section in MG5.
 - Compare LO matrix elements between MF2 and MF3 in MG5 sampling the full phase space.
 - Compare MF2 LO matrix elements between Recola and MG5.
 - Compare Born amplitudes between Recola and PBZp.
 - Compare Virtual amplitudes between Recola and PBZp.

- Validate Recola matrix elements and our use of those matrix elements in POWHEG-BOX:
 - Prepare a **Recola** model file (MF2) including Z' and W' bosons with non-diagonal flavour generic couplings.
 - Prepare a SSM UFO file (MF3).
 - Fix the Z' generic couplings in MF2 to MF3 couplings by comparing their production cross section in MG5.
 - Compare LO matrix elements between MF2 and MF3 in MG5 sampling the full phase space.
 - Compare MF2 LO matrix elements between Recola and MG5.
 - Compare Born amplitudes between Recola and PBZp.
 - Compare Virtual amplitudes between Recola and PBZp.
 - Compare Real corrections between Recola and PBZp.

- Validate Recola matrix elements and our use of those matrix elements in POWHEG-BOX:
 - Prepare a **Recola** model file (MF2) including Z' and W' bosons with non-diagonal flavour generic couplings.
 - Prepare a SSM UFO file (MF3).
 - Fix the Z' generic couplings in MF2 to MF3 couplings by comparing their production cross section in MG5.
 - Compare LO matrix elements between MF2 and MF3 in MG5 sampling the full phase space.
 - Compare MF2 LO matrix elements between Recola and MG5.
 - Compare Born amplitudes between Recola and PBZp.
 - Compare Virtual amplitudes between Recola and PBZp.
 - Compare Real corrections between Recola and PBZp.

- Validate Recola matrix elements and our use of those matrix elements in POWHEG-BOX:
 - Prepare a **Recola** model file (MF2) including Z' and W' bosons with non-diagonal flavour generic couplings.
 - Prepare a SSM UFO file (MF3).
 - Fix the Z' generic couplings in MF2 to MF3 couplings by comparing their production cross section in MG5.
 - Compare LO matrix elements between MF2 and MF3 in MG5 sampling the full phase space.
 - Compare MF2 LO matrix elements between Recola and MG5.
 - Compare Born amplitudes between Recola and PBZp.
 - Compare Virtual amplitudes between Recola and PBZp.
 - Compare Real corrections between Recola and PBZp.
 - Extract spin- and colour-correlated 2 → 2 tree matrix elements from Recola (required for the subtraction method used in POWHEG) and compare them against those in PBZp.

- Validate Recola matrix elements and our use of those matrix elements in POWHEG-BOX:
 - Prepare a **Recola** model file (MF2) including Z' and W' bosons with non-diagonal flavour generic couplings.
 - Prepare a SSM UFO file (MF3).
 - Fix the Z' generic couplings in MF2 to MF3 couplings by comparing their production cross section in MG5.
 - Compare LO matrix elements between MF2 and MF3 in MG5 sampling the full phase space.
 - Compare MF2 LO matrix elements between Recola and MG5.
 - Compare Born amplitudes between Recola and PBZp.
 - Compare Virtual amplitudes between Recola and PBZp.
 - Compare Real corrections between Recola and PBZp.
 - Extract spin- and colour-correlated 2 → 2 tree matrix elements from Recola (required for the subtraction method used in POWHEG) and compare them against those in PBZp.
 - Calculate the Z' cross sections with PBZp in which we replace the original matrix elements with those obtained from Recola.

 Prepare all the elements required for the pp → W/W' → tb process:

- Prepare all the elements required for the pp → W/W' → tb process:
 - The lists of all the possible flavour structures.

- Prepare all the elements required for the pp → W/W' → tb process:
 - The lists of all the possible flavour structures.
 - Feynman diagrams, to see whether there are potential further complication.

- Prepare all the elements required for the pp → W/W' → tb process:
 - The lists of all the possible flavour structures.
 - Feynman diagrams, to see whether there are potential further complication.
 - Extract Born (+colour-, spin-correlated), virtual and real matrix elements and import them to **POWHEG-BOX**.

- Prepare all the elements required for the pp → W/W' → tb process:
 - The lists of all the possible flavour structures.
 - Feynman diagrams, to see whether there are potential further complication.
 - Extract Born (+colour-, spin-correlated), virtual and real matrix elements and import them to POWHEG-BOX.
 - Check the singular limits, the convergence of the integration.

- Prepare all the elements required for the pp → W/W' → tb process:
 - The lists of all the possible flavour structures.
 - Feynman diagrams, to see whether there are potential further complication.
 - Extract Born (+colour-, spin-correlated), virtual and real matrix elements and import them to **POWHEG-BOX**.
 - Check the singular limits, the convergence of the integration.
- Perform phenomenological studies.

Conclusions

- Studied G₂₂₁ models.
- Calculated predictions for HL and HE LHC for new dilepton and toppair resonances. [arXiv:1812.07831].
- Work on NLO QCD corrections to EW top-pair/top-bottom production with implementation in POWHEG BOX.

THANK	YOU F	OR Y	YOUR	ATTI	ENTI	DN