

June 13th 2019 Collaboration meeting, Grenoble

Gas Purification: Goal & Status

José Busto, Marie-Cécile Piro Marseille, University of Alberta

Goals in terms of background

- Crucial to be able to identify the contaminants
- ► Traces Uranium, Thorium, Oxygen, H₂O, Radon, Krypton etc.
- Oxygen, H₂O, electronegative impurities
- Well removed by hot getter included in the loop system
- But radon rate increased: emanates from the getter!
- Radon ...
 - ~ 50mBq in the sphere at Queen's S30
 - Level required for Ne mixture from simulations < 48 μ Bq
- Krypton ...
 - ► For R2D2: removing the Kr85 from the Xenon
 - Level required from simulations < ?</p>

Acceptable level of radon

- Estimated by simulations: (credits Alexis)
- ► 10⁴ decays of ²²²Rn homogeneously distributed in volume
- ▶ 10⁴ decay of ²¹⁸Po /²¹⁴Pb on the inner surface
- Results in dru/Bq...

	He mixture	Ne mixture
²¹⁸ Po	2411	612
²¹⁴ Pb	663	227
²¹⁴ Bi + ²¹⁴ Po	987	210
Total	4061	1050
To obtain 0.05 dru < 1keV	< 12µBq	< 48µBq

Radon mitigation: Strategies

- Radon trap
 - Feasible but CH4 is also absorbed
 - Tests need to be done to find the optimal conditions of the column (Temperature, Flow) to remove the radon only.
 --> In progress led by José in Marseille.
- Queen's tests and plan with S30
 - Run plan already in place in order to control the CH4 amount.
 - Procedure in place for running with the trap.
- Material for trapping
 - Carboxen 564: Material also with the lowest radioactivity
 - Alternative Carboxen 1000

Radon adsorption measurements at CPPM

Radon : noble gas => physisorption on microporous materials

• **Optimum capture** => porous radious $\approx 2 \times Rn$ atomic diametre

Experimentaly : *Porous radious* \in [0.5 nm - 0.7 nm]

(Capture ability is also enhanced by chemical composition, porous shape, ...)

<u>Many microporous adsorbents</u>: Active charcoals, Carbon Molecular Sieves, Zeolite, Metal Organic Framework, Organic Aerogels, Cryptophanes, etc, ...

* Adsorption competition

(Atomic diametre)

He -> 0.218 nm	Ne -> 0.275 nm
Ar -> 0.340	Kr -> 0.369
Xe -> 0.410	Rn -> 0.417
CH ₄ -> 0.380	N ₂ -> 0.364

High difficulty to remove Rn from Xe

Swing adsorption (P,T,V) in optimized adsorbent could be a solution ?

Radon capture in mixed gases with continuous circulation

In a chromatographic column each gas component has different velocities

The initial gas composition is destroyed (for some time) (He + CH₄, He + Ar, Ar + CH₄, Ne + CH₄, CF₄ + CHF₃ + C₄H₁₀)

We need optimization of adsorbent to enhance Rn capture, and reduce the delay time

Gas analysis : many technologies (IR, UV, catality, semi-conductor, ...)

Ex : OLDHAM OLCT 100 – XP- IR Range 0 – 5 % CH_4

Radon adsorption test bench of CPPM

Performed mesurements

- 60 adsorbents samples measured @ 20, 0, -30, -50 , 80 °C
- Carrier gases used N₂, He, Ar,
- Collaboration with physical-chemist

=> microscopic adsorbent properties

Current tests and projets

- Rn adsorption in Ar +CH₄, Ne + CH₄ -> Marie Cécile
- Rn adsorption in CF₄+CFH₃+Isobut -> MIMAC (Daniel)
- Rn adsorption in Xe -> R2D2 (big challenge)

For special gases (Ne, Xe, CF₄,...), a closed circuit is required

Summary

- Radon can be capture in microporous adsorbents with high efficiency
- Competition between Rn and carrier gas need new optimized materials
- Cleaning of gas mixture is possible but we need a more in-depth study.
- A radon adsorption facility exist at CPPM (Marseille) for optimization of radon capture in different gases and materials.
 - \rightarrow Several studies in progress or in project

Radon mitigation: Strategies

- Electrophoretic radon removal
 - Based on the first ionisation energy, exploiting favorable ion charge-exchange dynamics.

	First ionization Energy (eV)
Rn	10.4875
Xe	12.14
Ne	21.56
CH_4	12.61
F	17.42
Ar	15.75
C_3F_8	13.38

► By comparing the energy, in collision with xenon ions, radon will be efficiently ionized via charge transfer: Xe⁺ + Rn → Xe + Rn⁺

Radon mitigation: Strategies

- Electrophoretic radon removal
 - Based on the first ionisation energy, exploiting favorable ion charge-exchange dynamics.

► By comparing the energy, in collision with xenon ions, radon will be efficiently ionized via charge transfer: Xe⁺ + Rn → Xe + Rn⁺

Thermodynamic properties:

Figure 1: (left) Vapour pressures of Radon and fluorocarbons against temperature and (right) enthalpy of vaporization at saturation of fluorocarbons against temperature.

The required heating power and the required cooling power depend on:

- the vapor flow from the stripping (bottom) section
- the liquid flow from the rectifying (top) section
- the enthalpy of vaporization, plotted for different temperatures

These calculations assume a gas feed into the column at:

- saturation temperature and pressure
- no heat loss to the surroundings
- flow rate into the column
- the reflux ratio

Figure 5: McCabe Thiele diagram for distillation of Radon from C_4F_{10} , with a gaseous feed, and a reflux ratio of 200. The number of theoretical stages is 11.

Table 3: Possible distillation column parameters for gaseous feeds of C₃F₈ and for C₄F₁₀ at 200 psi.

Parameter	C ₃ F ₈	C ₄ F ₁₀
Reflux Ratio	350	150
Reduction Factor	50	50
Mass Flow Rate	6 kg/h	12 kg/h
Minimum Column Height	1.29 m	0.35 m
Heating Power Required	288.4 W	93.4 W
Cooling Power Required	402.2 W	274.6 W

Table 4: Possible distillation column parameters for liquid feeds of C_3F_8 and for C_4F_{10} at 200 psi.

Parameter	C ₃ F ₈	C ₄ F ₁₀
Reflux Ratio	300	75
Reduction Factor	50	50
Mass Flow Rate	6 kg/h	12 kg/h
Minimum Column Height	1.11 m	0.39 m
Heating Power Required	345.9 W	139.1 W
Cooling Power Required	344.7 W	137.3 W

• Summary:

- Simulations with McCabe method done
- Exploring stripping column to improve factor reduction
- Compare the 2 models
- CFI funded to build the column
- Start this summer
- Goal and time lines:
 - Distillation ready by December 2019/ beginning of next year
 - Paper to be published with the code available