

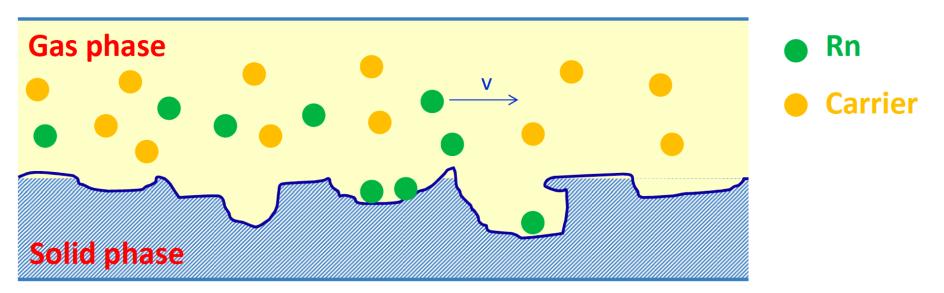
June 12th 2019 Collaboration meeting, Grenoble

Gas Purification: Requirements, Status & prospects

Marie-Cécile Piro University of Alberta

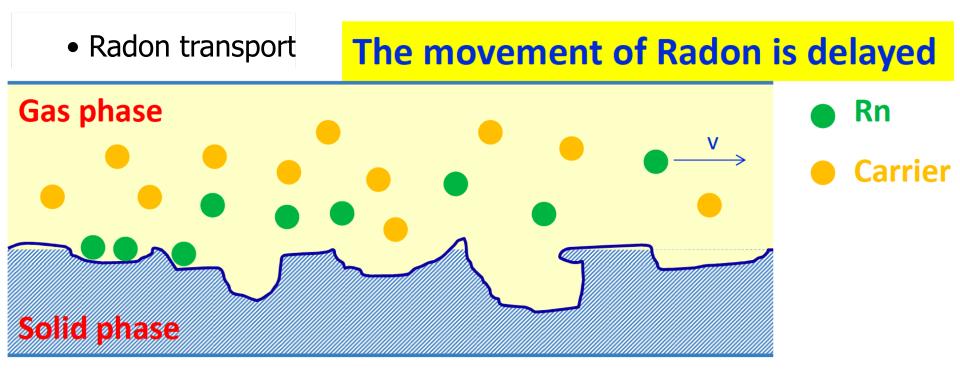
Goals in terms of background

- Crucial to be able to identify the contaminants
 - ► Traces Uranium, Thorium, Oxygen, H₂O, Radon, Krypton etc.
- Oxygen, H₂O, electronegative impurities
 - Well removed by hot getter included in the loop system
 - But radon rate increased: emanates from the getter!
- Radon ...
 - ~ 50mBq in the sphere at Queen's S30
 - Level required for Ne mixture from simulations < 48 μ Bq
- Status and Next ...
 - At LSM for the first commissioning and data taking
 - New horizon


Acceptable level of radon

- Estimated by simulations: (credits Alexis)
- ► 10⁴ decays of ²²²Rn homogeneously distributed in volume
- ▶ 10⁴ decay of ²¹⁸Po /²¹⁴Pb on the inner surface
- Results in dru/Bq...

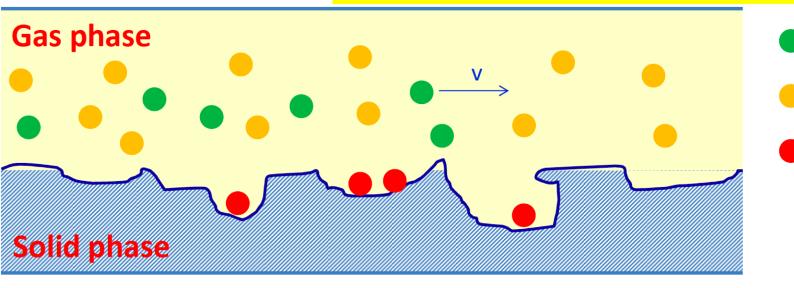
	He mixture	Ne mixture
²¹⁸ Po	2411	612
²¹⁴ Pb	663	227
²¹⁴ Bi + ²¹⁴ Po	987	210
Total	4061	1050
To obtain 0.05 dru < 1keV	< 12µBq	< 48µBq


- Radon trap
 - ► Feasible but CH₄ is also absorbed
 - Tests need to be done to find the optimal conditions of the column (Temperature, Flow) to remove the radon only.
 --> In progress led by José in Marseille with MCP.
- Queen's tests and plan with S30
 - ▶ Run plan already in place in order to control the CH₄ amount.
 - Procedure in place for running with the trap.
- Material for trapping
 - Carboxen 564: Material also with the lowest radioactivity
 - Alternative Carboxen 1000

- Radon is a noble gas
 - No chemical bond
 - Only adhesion on surface by weak Van Der Waals force
- Radon transport

Credit: José Busto

- Radon is a noble gas
 - No chemical bond
 - Only adhesion on surface by weak Van Der Waals force

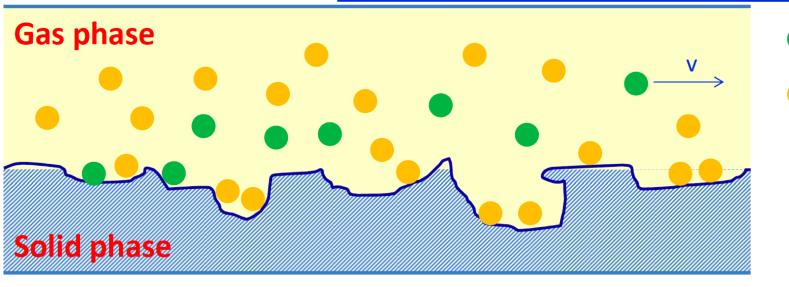

- Radon is a noble gas
 - No chemical bond
 - Only adhesion on surface by weak Van Der Waals force
- Radon transport

The movement of Radon is delayed unless Rn decays in the filter

Rn

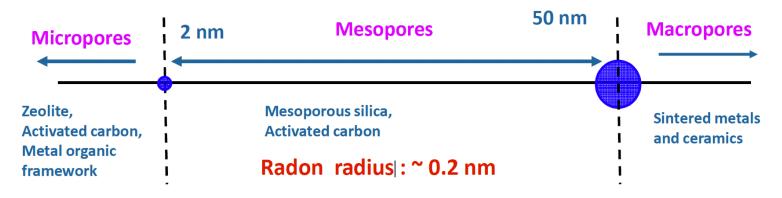
Carrier

Rn decay

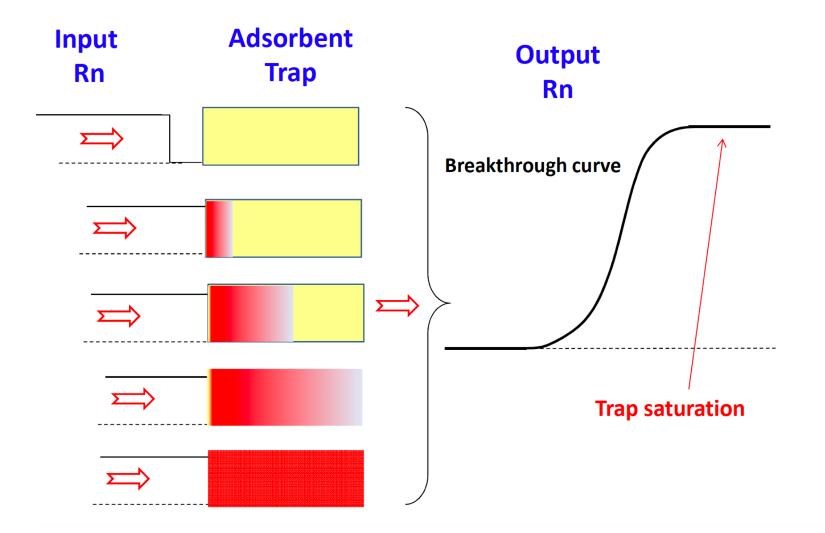

Credit: José Busto

- Radon is a noble gas
 - No chemical bond
 - Only adhesion on surface by weak Van Der Waals force
- Radon transport

Capture competition between carrier gas and Rn

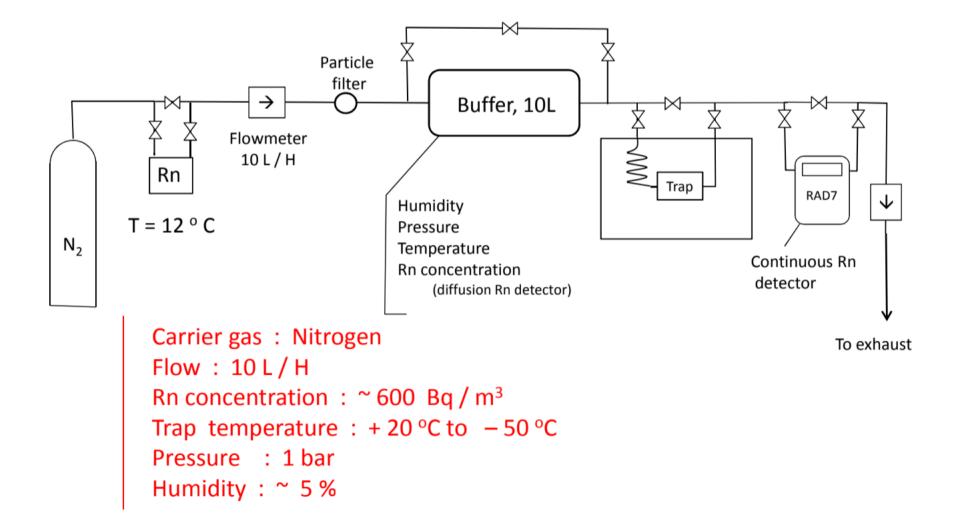

Rn

Carrier gas

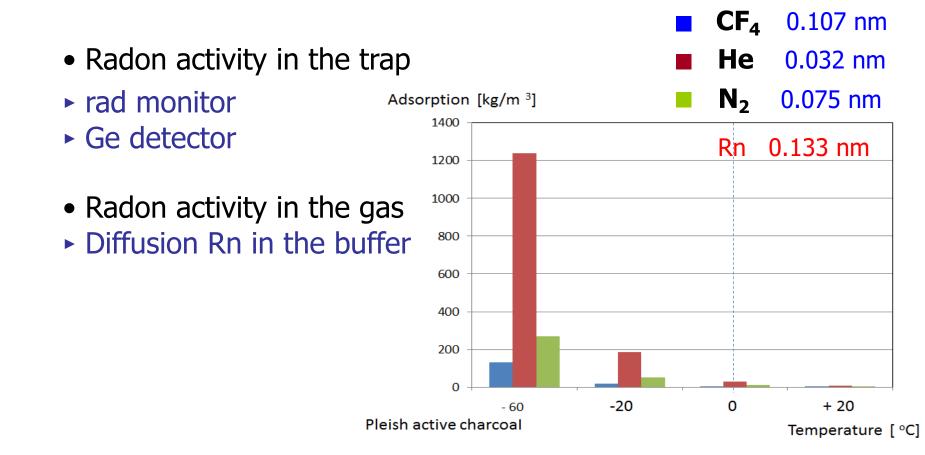

Credit: José Busto

- High surface area
 - Porous materials needed
- Three parameters used to estimate the porosity
 - Specific surface area, Specific pore volume
 - Pore size, shape and distribution

- Temperature dependence (thermal agitation)
- Carrier gas dependence


Procedure in place

Future test at Marseille


Radon trap setup in Marseille

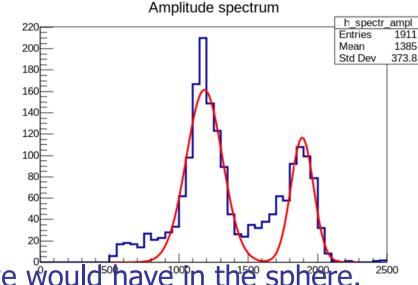
Dynamic Rn adsorption

Absorption factor: K

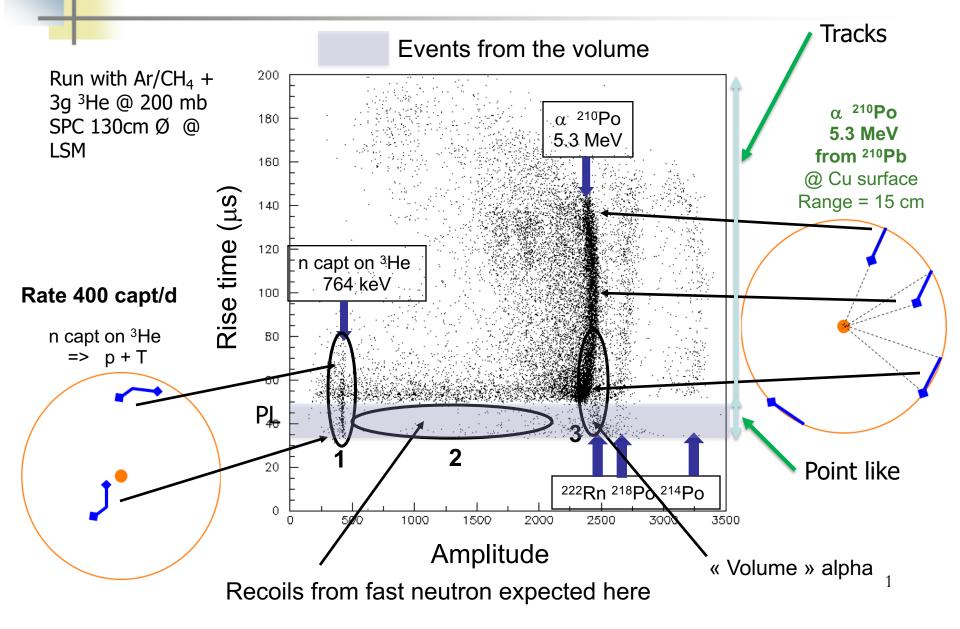
$K [kg/m^{3}] = \frac{Rn \ activity \ in \ the \ trap[Bq/kg]}{Rn \ activity \ in \ the \ gas[Bq/m^{3}]}$

Results for N2 and different carbon

		Temperature °C						
	20		-30		-50			
Samples	K factor(m3/Kg)	error	K factor(m3/Kg)	erreur	K factor(m3/Kg)	erreur		
CARBOSEIVE SIII	10,0	6,1	168,4	9 <mark>,</mark> 5	728,5	32,9		
CARBOXEN 1000	10,8	8,4	80,8	6,7	645,3	27,9		
CARBOACT	20,5	2,9	131,9	4,1	425,5	11,4		
MOF Basolite C300	8,7	4,8	215,2	10,3	409,2	10,6		
K48 SPECIAL	12,5	1,8	92,4	3,5	347,9	10,3		
К48	10,0	1,6	61,4	2,8	271,5	12,0		
NUCLEARCARB 208C 5KI3	<mark>6</mark> ,9	1,3	43,3	2,5	209,5	7,0		
K610	<mark>6</mark> ,2	1,3	22,1	2,6	170,2	6,0		
CARBOXEN 569	2,2	6,3	9,7	3,9	99,8	5,7		
NUCLEARCARB 208C 5TEDA	3,9	1,2	29,9	2,1	97,5	4,3		
ENVIRONCARB 207C	2,2	1,0	12,1	1,7	49,1	3,3		


• Thursday with José Busto

We will talk more about the new setup and future test in Marseille


Test at Queen's with S30

Data taking at Queen's

- Run
- ► Keep the same conditions of HV1 HV2 pressure (3bar)
- 60h of background run without circulation with getter
- Alpha during this background run
- We will see the radon222 and Po218 – Po214
- Po214 will be at the surface
- According to the simulations (Alexis) the rate of Po214 will be half of the amount of radon we would have in the sphere.
- Analysis ongoing

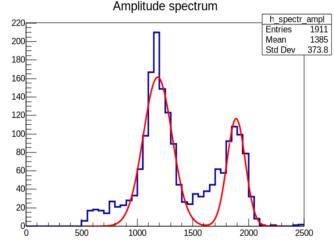


Illustration of particle identification

Run Plan – 2

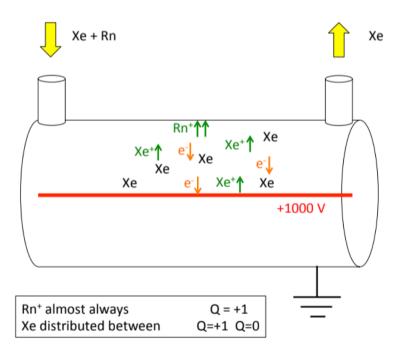
- Alpha run with the source
- 30min of Am run without circulation with getter
- ► Keep the same conditions of HV1 HV2 pressure (3bar)
- 23h of background run without circulation with getter
- Alpha run
- We will see the radon222 and Po218 – Po214 with much more statistics!
- A way to confirm that we see the right amount of the radon in the sphere (according to the amount of Po214).
- Use the Rad7 monitor in series (will be good)

Run Plan – 3

- Run with the radon trap at Queen's
- Carboxen 1000 to be shipped at Queen's
- Run with the trap without circulation with getter
- ► Keep the same conditions of HV1 HV2 pressure
- Following the procedure for the trap
- Monitoring of the gas mixture in the sphere
- Run Am for the calibration of the energy scale
- RGA in series
- Spectrometer? (José Busto)
- Time scale
- Mid-July, we should have the results.

... Instead of using the getter, why not the GasKleen filter ?

- GasKleen filter
 - ► Used by PICO to remove O₂, H₂O in C₃F₈
 - ► Very expensive ...
 - Never tested for radon emanation measurements
 - Old filters available at SNOLAB from PICO-2L
- Measurements were done but not very conclusive
 - Setup used in SNOLAB has leaks..
 - Ask to ship it for measurements at Queen's - in France ?
 - These measures need to be done before buying the filter.



- Electrophoretic radon removal
 - Based on the first ionisation energy, exploiting favorable ion charge-exchange dynamics.

	First ionization Energy (eV)
Rn	10.4875
Xe	12.14
Ne	21.56
CH_4	12.61
F	17.42
Ar	15.75
C_3F_8	13.38

► By comparing the energy, in collision with xenon ions, radon will be efficiently ionized via charge transfer: Xe⁺ + Rn → Xe + Rn⁺

- Electrophoretic radon removal
 - Based on the first ionisation energy, exploiting favorable ion charge-exchange dynamics.

► By comparing the energy, in collision with xenon ions, radon will be efficiently ionized via charge transfer: Xe⁺ + Rn → Xe + Rn⁺

Summary

- Planning well defined for the next months
 - Results from Queen's during July
 - Analysis to be posted the next weeks
 - José measures will be a complement to define the optimal parameters (Temperature, flow)
- At UofA
 - Exploration of new methods
 - Gaskleen to be sent at Queen's
 - Mounting and assembly of the new trap for testing at Queen's