Future of NEWS-G at SNOLAB and LSM

GUILLAUME GIROUX

 5^{TH} NEWS-G COLLABORATION MEETING

LPSC GRENOBLE, JUNE 2019

Copper backgrounds

Current status: 140-cm sphere (C10100 Cu)

 Commercial copper, leading source of background is ²¹⁰Pb from the bulk copper. Recently measured with XIA by XMASS collaboration at 29 +/- 8 Bq/kg, ~5 times as much as all other backgrounds combined

Copper backgrounds

Current status: 140-cm sphere (C10100 Cu)

- Spinning, welding, weld repair: ~93 days at the sea-level
- Cosmogenic activation: long lived ⁶⁰Co, but also shorter lived ⁵⁸Co, ⁵⁷Co, ⁵⁴Mn.

Future Mitigation of Copper Backgrounds

Ultimate solution:

- Electroforming of an monolithic copper shell in an underground environment (PNNL, or in situ at SNOLAB or LSM)
 - Perfect control on cosmogenic activation
 - Removes machining steps that may add backgrounds
 - No measurable ²¹⁰Po with XIA, < 4.1 mBq/kg, but expected to be << 4.1 mBq/kg
- Currently prohibited by costs
 - Large electroforming baths needed
 - Large amount of acid needed
- There is a need to establish a new underground facility for this art
 - LSM, SNOLAB or Boulby...

Future Mitigation of Copper Backgrounds

Intermediate solution:

- Cleanest commercially available copper sphere: Mitsubishi Material Corporation (MMC) 6N copper
 - 99.9999% Purity
 - No measurable ²¹⁰Pb with XIA (<4.1 mBq/kg)
- G. Giroux has requested funding from CFI for a 60-cm SPC to be certified for 10-bar pressure
 - Production of disks limit SPC size to 70 cm.
 - 60-cm chosen to leave option open to host in SEDINE shielding at LSM
 - Design piping to be able to fit in NEWS-G SNOLAB shielding
- Mitigation of cosmogenic activation
 - Dedication of a production line at MMC
 - Delivery 3 months after order
 - 1.5 months to prepare production line
 - 1.5 months to production from electrolization to disk form
 - Learning from previous experience and manage better shipping, machining, and transport between machining sites and LSM/SNOLAB

What we really pay for (55 kEur for 80 kg Cu) is the dedication of a production line. We could produce more disks for a second sphere, and we could replace SEDINE's innermost shielding with 6N Cu?

MMC 6N 60-cm (10-bar) SPC

MMC 6N 60-cm (10-bar) SPC

Option 1:

Install at SNOLAB in NEWS-G shielding after the physics program of the 140-cm SPC becomes limited by backgrounds

Option 2:

Install at LSM in SEDINE's shielding

- This implies the shield at LSM would need to be modified to allow for a straight nozzle SPC, Pb plug to be manufactured.
- No glovebox at LSM: need to work in the radon free room.

Looks like we're headed for option 2

Fate of SEDINE 60-cm NOSV copper SPC

In the case of option 2, SEDINE becomes available.

We propose to run it in the future Queen's compact shield (funding requested to CFI)

Fate of SEDINE 60-cm NOSV copper SPC

SEDINE in the Queen's compact shield

- Characterization of detector and sensors in low background conditions
- Measurement of attainable background indicates the feasibility of coherent neutrino-nucleus (CNNS) scattering experiment at nuclear reactor

CNNS at nuclear reactor

- Rich physics program: sterile neutrinos, neutrino magnetic moment, non-standard interactions, probe of nuclear structure, weak nuclear charge
- Technological applications: Monitoring of nuclear reactor, nuclear safeguarding

Current issues

Electroformed sphere:

- Funding
- Partnerships

6N Sphere

- High pressure certification in France and Canada
- High pressure certification with CH4 ?
- Funding decision from CFI end of June

Queen's Shield

- Finalize design for a 60-cm SPC
- Space approval at Queen's
- Initiate contact with Canadian Nuclear Agency

Anticipated Timeline

Funding available for 6N Sphere: Summer 2019 Delivery of copper disks: Fall 2019 Machining and Welding: Winter 2020 Completed sphere: Spring or Summer 2020