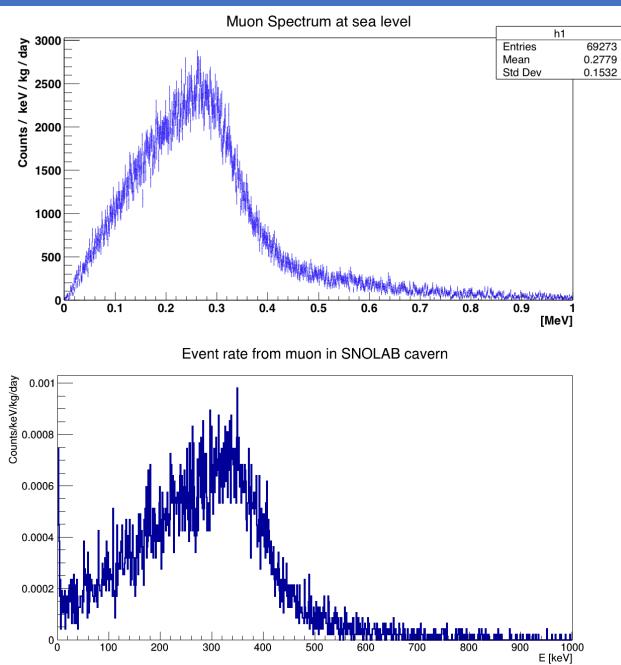
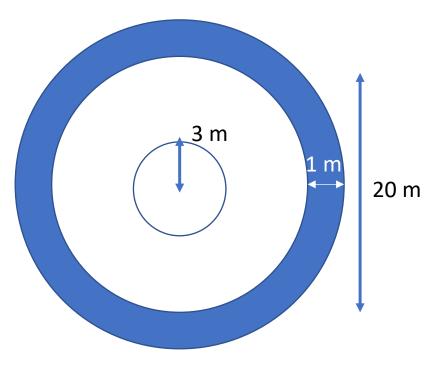


Background simulation status

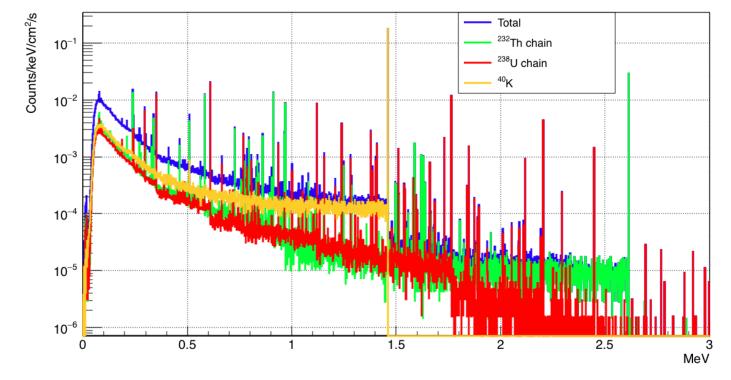

Alexis Brossard June 12 2019 6th News-G collaboration meeting

Reducing the background: First step, going deep underground

Sea level muon flux:


~8.64x10⁶ µ/m2/s

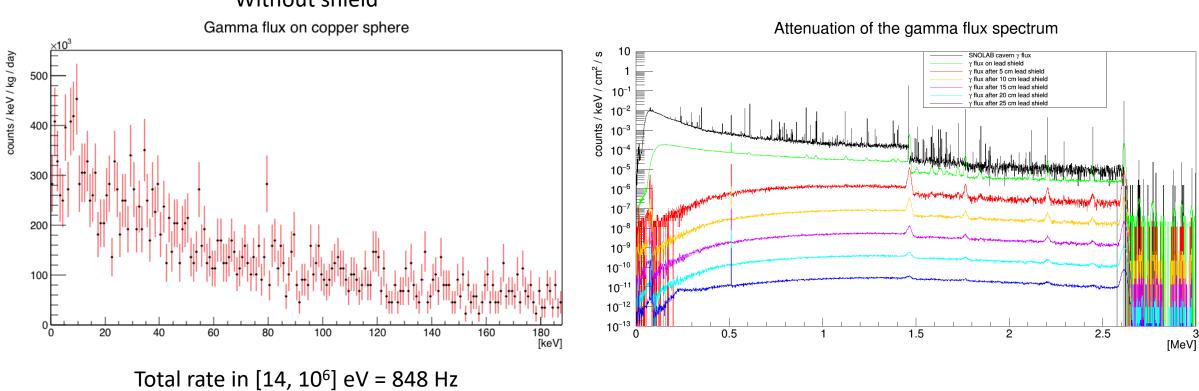
SNOLAB:


~0.27 µ/m2/day

Sub-keV events: ~20 dru -> 0.0008 dru

Estimation of the gamma flux:

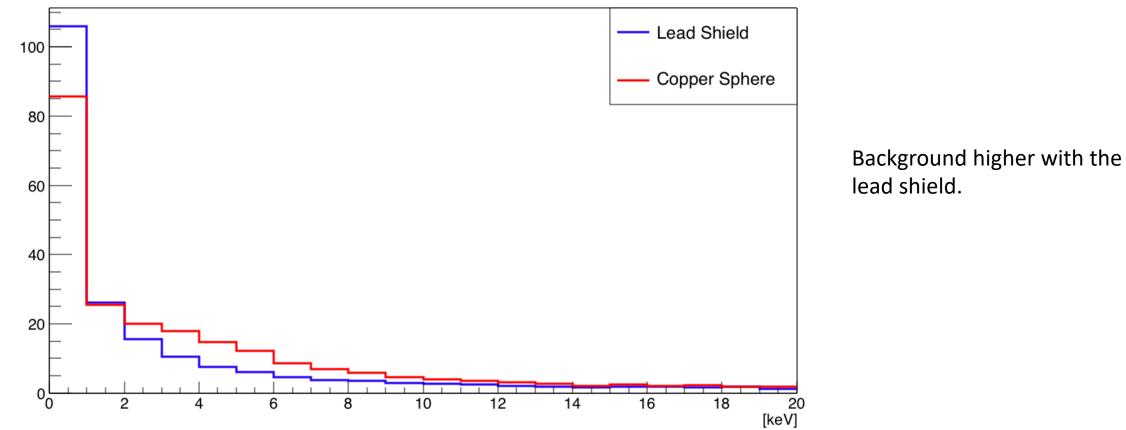
Gamma flux in Snolab cavern 2.11268 γ /cm²/s



Contamination of Norite Rock:

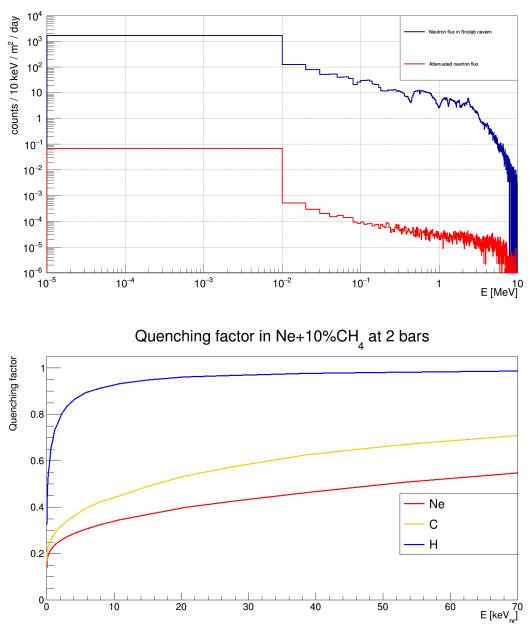
13 Bq/kg ²³⁸U 15 Bq/kg ²³²Th 364 Bq/kg ⁴⁰K

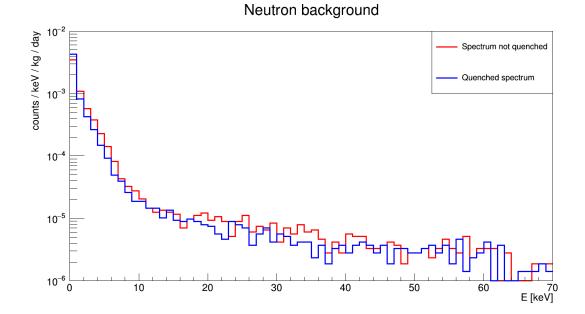
								-	
	40K	214Pb	214Bi	212РЬ	208T1	208T1	137Cs	60Co	60Co
Energie	1460	352	609	239	583	2614	661	1173	1332
XXL(blindage)	76±2	25.5±0.4	40.5±0.5	8.2±0.3	8.5±0.3	26±1	1.4 ± 0.2		
NEMO(blindage)	85+3	21+1	35+3	63+06	5 7+0 7	27+2	7+1		
Radon	125±4	43±2	67±2	14±1	14±1	42±7			
Jasmin	127±5	36±2	64±6	12±1	13±1	41±3	2.2±0.9	13±2	13±2
TGV	141±3	25±1	41±1	7.4±0.6	9±1	29±2	5.6±0.6		
Edelweiss	207±3	47±1	72.2±0.6	17.3±0.3	18±1	51±2	1.1 ± 0.2		
Polset (bureaux)	434±7	52±1	82±1	51±3	51±1	126±4	3.7±0.4		


Flux mesurés : y.s⁻¹.cm⁻²(.10⁻³)

Without shield

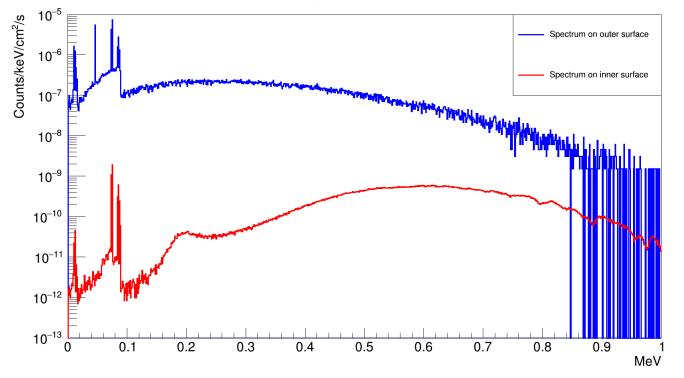
With shield: 4.6 x10⁻³ mHz in [14, 10⁶] eV And 9 $x10^{-3}$ dru < 1 keV


Effect of the PL shield is very limited, with only the lead shield, the results will be similar



Neutron spectrum simulated on copper sphere and lead shield

Attenaution of the neutron flux:


With polyethylene and lead shield: 4.38 x 10⁻³ dru < keV 3.5 x 10⁻¹¹ mHz With a negligible background form gamma and neutron, the dominant will be the one coming form lead shield:

9 μBq/kg of ²³²Th => 0.42 dru < 1 keV 70 μBq/kg of ²³⁸U => 0.050 dru < 1keV 4.6 mBq/kg of ²¹⁰Pb => 25.9 dru < 1 keV

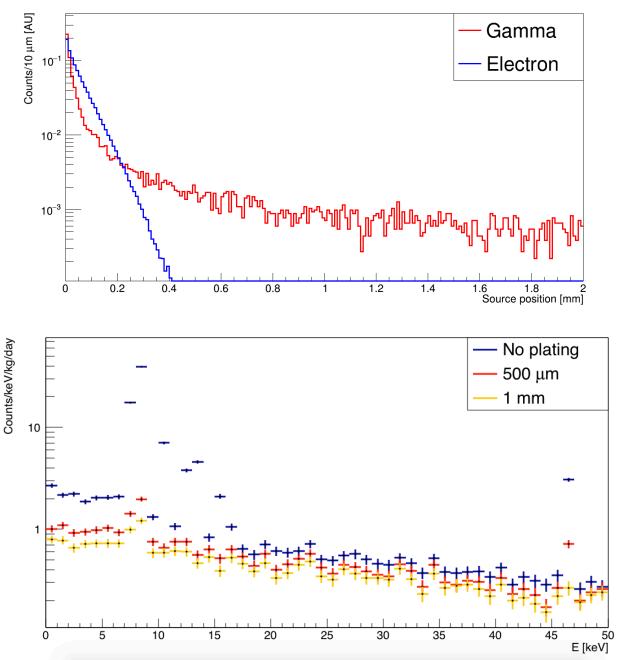
With only modern lead the background would be dominated by ²¹⁰Pb.

3 cm of roman lead have a huge attenuation.

With roman lead: 9.1 µBq/kg of ²³²Th 44.5 µBq/kg of ²³⁸U

					Counts / keV /	kg / day <1				
	Source	Contamintaion / flux			keV [1;5] keV				Rate [mHz]	
	210Pb	<25		mBq/kg	0.14		0.12		0.057	
Archeological Lead	238U	44.5	±7.7	µBq/kg	0.142	0.049	0.094	0.0026	0.277	0.053
Archeological Leau	232Th	9.1	±1.8	µBq/kg	0.0256	0.0098	0.0161	0.0041	0.0557	0.0118
	40K	<1.3		mBq/kg	0.28		0.23		0.65	
	210Pb	4.6	±0.016	mBq/kg	0.053	0.003	0.055	0.001	0.17	
Modern Lead	238U	79	±14	µBq/kg	0.17	0.042	0.132	0.028	0.5	0.09
WOUEIII Leau	232Th	9	±2	µBq/kg	0.0251	0.002	0.0201	0.0011	0.075	0.002
	40K	<1.46		mBq/kg	0.35		0.26		0.67	
	Total (without upper limit)					0.1028	0.3822	0.0358	0.9647	0.1568

Gamma flux from 4.6 Bq/kg of ²¹⁰Pb decay chain in the modern lead


Radial position of the decay within the sphere thickness

With 0.5 dru from the lead shield, the dominant background the ²¹⁰Pb chain come from the copper sphere:

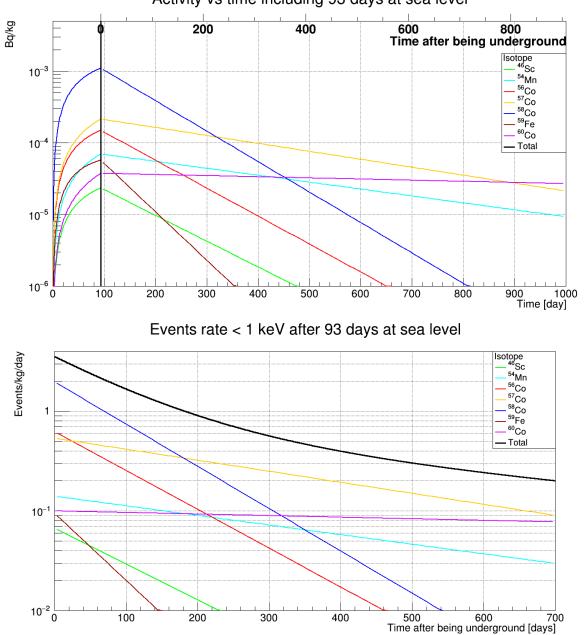
28.5 mBq/kg of ²¹⁰Pb => 2.7 dru < 1 keV from gamma

With 500 μ m of electrolyte, reduction of 62 %

=> 1.04 dru < 1 keV

	Source	Contamintaion / flux			Counts / keV	/ kg / day <1 keV	Counts / keV	/ kg / day in [1;5] keV	Rate [mHz]	
Copper Sphere	210Pb	28.5	±8.1	mBq/kg	1.04	0.38	1.01	0.33	0.86	0.25
	238U	3	±0.1	µBq/kg	0.0117	0.0013	0.0115	0.0008	0.028	0.001
	232Th	13	±0.2	µBq/kg	0.0754	0.0059	0.0692	0.0033	0.163	0.003
500 µm electrolyte inside	40K	0.1		mBq/kg	0.0157	0.003	0.0186	0.006	0.0622	0.0018
	60Co	38		µBq/kg	0.105	0.009	0.107	0.004	0.385	0.002
	210Pb	<25		mBq/kg	0.14		0.12		0.057	
Archeological Lead	238U	44.5	±7.7	µBq/kg	0.142	0.049	0.094	0.0026	0.277	0.053
	232Th	9.1	±1.8	µBq/kg	0.0256	0.0098	0.0161	0.0041	0.0557	0.0118
	40K	<1.3		mBq/kg	0.28		0.23		0.65	
	210Pb	4.6	±0.016	mBq/kg	0.053	0.003	0.055	0.001	0.17	
Modern Lead	238U	79	±14	µBq/kg	0.17	0.042	0.132	0.028	0.5	0.09
Modern Lead	232Th	9	±2	µBq/kg	0.0251	0.002	0.0201	0.0011	0.075	0.002
	40K	<1.46		mBq/kg	0.35		0.26		0.67	
	Gamma	2.11E+00		γ/cm2/s	0.00837	0.0001	0.00951	0.000044	0.00464	0.000037
Cavern	Neutron	4000		n/m2/day	0.00438	0.00036	0.000415	0.000132	3.54E-11	2.60E-12
	Muon	0.27		µ/m2/day	6.20E-04	1.10E-04	4.40E-04	4.20E-04	5.04E-08	5.10E-10
Total without upper limit					1.677	0.506	1.544	0.381	2.581	0.415

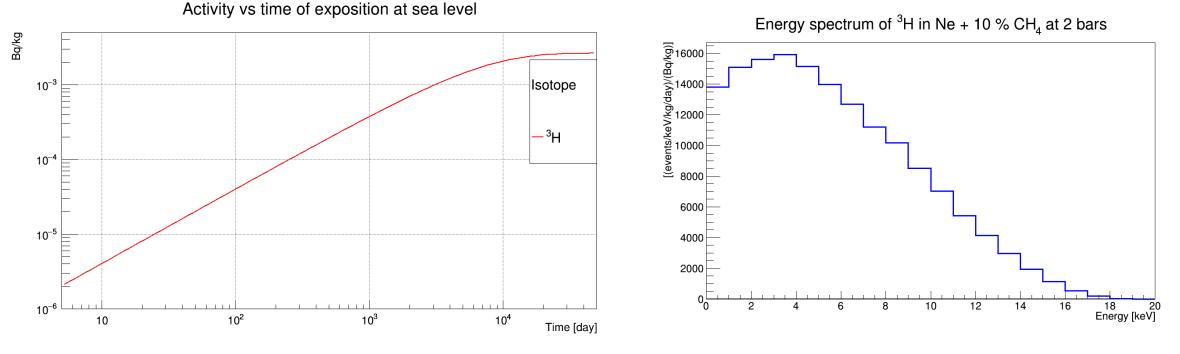
²¹⁰Pb measured by X-mass


²³⁸U and ²³²Th measured at PNNL

⁶⁰Co estimated from 3 months of exposure at sea level

⁴⁰K activity in C10100 copper measured by NEXT-100

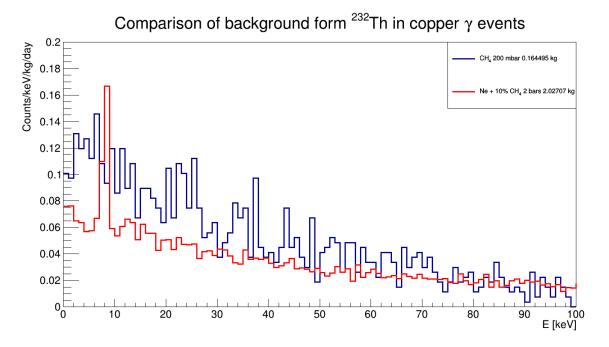
The upper limits in the lead are not counted in the total


Cosmogenic activation of copper

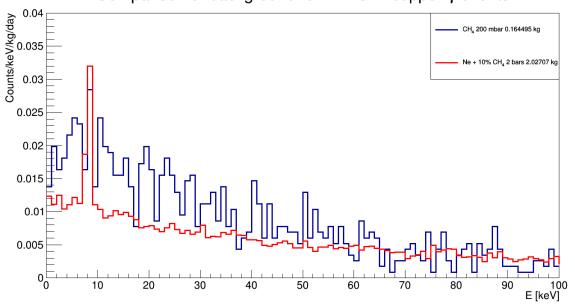
Activity vs time including 93 days at sea level

	half life [days]	Production rate [days ⁻¹]				
		Ziegler	Gordon et al			
⁵⁶ Co	77.2	22.9	20.0			
⁵⁷ Co	271.7	88.3	74.1			
⁵⁸ Co	70.9	159.6	123			
⁶⁰ Co	1898	97.4	55.4			
⁵⁴ Mn	312	32.5	27.7			
⁵⁹ Fe	44.6	6.5	4.9			
^{46}Sc	83.79	3.8	2.7			

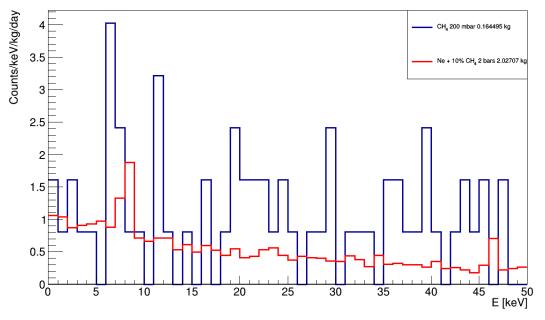
April 1 => 3.5 dru < 1kev June 1 => 2.2 dru < 1 keV July 1 => 1.7 dru < 1 keV August 1 => 1.4 dru < 1 keV Septembre 1 => 1.2 dru < 1 keV


13804 events / keV / kg / day < 1kev for 1 Bq/kg To keep the rate below 0.1 dru, we need less than 7.2 μ Bq/kg. This activity is reached after ~20 days.

SNOLAB:

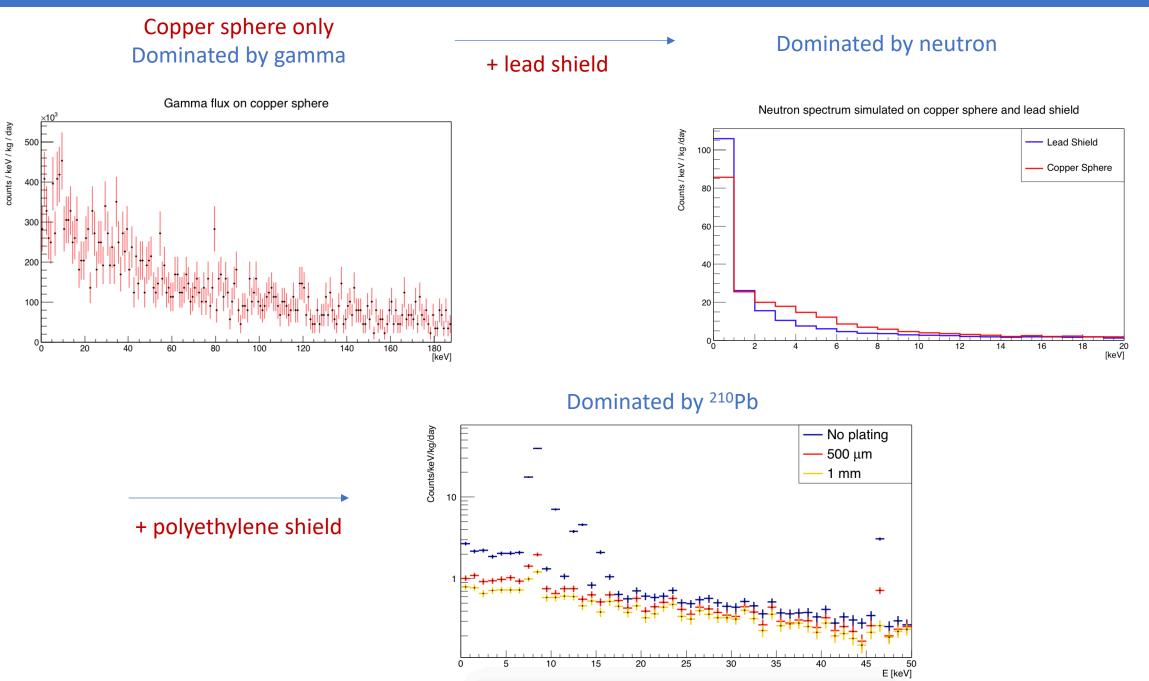

Praxair: Neon produced in US, send in Paris Ontario. 3 to 5 weeks between production and delivery => 0.1 to 0.2 dru

LSM: Messer: Neon produced in China, send to Austria, then in France. Air Liquide: No information yet.


First simulation on pure 200 mbar pure CH4

Comparison of background form 238 U in copper γ events

Comparison of background form 210 Pb in copper γ events



Comparison between 200 mbar pure CH_4 and 2 bars of Ne+10% CH_4 (same quantity of CH_4)

Events rate estimated assuming 3 μ Bq/kg of ²³⁸U and 12 μ Bq/kg of ²³²Th, 28 mBq/kg of ²¹⁰Pb 500 μ m of pure copper on the inner surface.

Similar events rate

Conclusion on dominant background Ne+CH₄ at 2 bars:

THANK YOU