

TUNL Data Analysis

Marie Vidal Collaboration meeting June 12th 2019

Outline

- Recall campaign 2018
- Previous collaboration meeting
- Update on analysis
- Campaign 2019
- Analysis develop model for expected recoils peak
- Next steps

Recall: QF experiment summary

- E_n: known
- θ : chosen
- E_{nr}: calculated
- E_{ee}: extracted energy mean from energy spectrum
- Backing detectors (BD)
- Beam Pick-off Monitor (BPM)

Recall campaign 2018

- Reaction: D+D \rightarrow n+³He+ γ
- Neutron beam 3.85 MeV
- Gas: Neon:CH₄ (97:3)
- Pressure: 500 mbar
- Calibration: ⁵⁵Fe source (during data taking and 5 min between each h of data taking)
- 4 energy points investigated: 27, 14.4, 8.5, 4.6 keV_{nr}

Energy calibration: Fe55 peak at 5.9 keV

Recall: previous collaboration meeting

- psd: neutron/gamma identification (backing detector)
- TOF neutrons (backing detector BPM)
- Rise time
- Onset time

Simplified extraction of recoils peak Background subtraction

Recall from previous campaign

quenching factor of Neon at 500mbar as a function of recoil energy

- 2018-12-12
 Error bars: uncertainty in energy mean,
- neutrons energy and scattering angle
- No systematics

Analysis update: extraction E_{ee} mean

- Background pdf from background onset window
- Interpolation of background spectrum
- Model recoils peak with a gaussian

- Red curve: total fit
- Black curve: contribution of each source of events (BG and recoils)

Quenching factor update

Quenching factor in Neon as a function of nuclear recoil energy

- Error bars: uncertainty in energy mean, neutrons energy and scattering angle
 No systematics
 Turned processing
- Tuned processing parameters to narrow
 ⁵⁵Fe peak (5%)

Campaign 2019: lower recoil energies

- p + ⁷Li \rightarrow n + ⁷Be+ γ
- Neutron beam energy 545 keV
- Gas: Neon:CH₄ (97:3)
- Pressure: 2 bar
- Al sphere + new sensor (glass tube)
- Improved shielding (neutrons/gammas)
- Calibration: ⁵⁵Fe source (5 min between each h of data taking)
- 8 energy points investigated: 6.52, 2.93, 1.98, 1.71, 1.29, 1, 0.73 and 0.34 keVnr

Annulus configuration

Campaign 2019: lower recoil energies

- p + ⁷Li \rightarrow n + ⁷Be+ γ
- Neutron beam energy 545 keV
- Gas: Neon:CH₄ (97:3)
- Pressure: 2 bar
- Al sphere + new sensor (glass tube)
- Improved shielding (neutrons/gammas)
- Calibration: ⁵⁵Fe source (5 min between each h of data taking)
- 8 energy points investigated: 6.52, 2.93, 1.98, 1.71, 1.29, 1, 0.73 and 0.34 keVnr

Multiple energies configuration

Energy calibration: Fe55 peak at 5.9 keV

Recoils events selection

background spectrum

Recoils energy spectra: E_{ee} extraction

Study of the peak shape: geometry

Study of the peak shape: simulation

- Choose randomly coordinates of events
- Scattering angle from coordinates
- $E_{nr}(E_n, \theta)$
- μ (#pe) = E_{nr}xQF / W (W: energy necessary to create 1 e/i pair)
- $\#pe = Poisson(\mu(\#pe))/COM-Poisson$
- #se = Nth_Polya(#pe) (convolution)
- Conversion from #se to eVee: using ⁵⁵Fe calibration
- Expected energy spectrum

Study of the peak shape: run7, 2.93 keV_{nr}

Comparison between Poisson and COM-Poisson

Study of the ⁵⁵Fe peak: gain check

- Choose to use the ⁵⁵Fe peak from the 2018 campaign to compare with the expected peak shape.
- Gain: 10³
- First comparison: superimposition of data energy spectrum and expected energy spectrum.

Conclusion

- 2nd estimate of QF for 2018 campaign
- 2019 campaign down to single electron sensitivity: 0.34 keV $_{\rm nr}$
- 12 energy points: 0.34 to 27 keV_{nr} in neon gas
- Develop a model for the recoils peak shape
- Worked with Dan to implement the COM-Poisson stat to my model
- Implement model peak shape to extract QF using unbinned likelihood
- Tune different processing parameters: impact on energy spectra
- Tune selection cuts: impact on energy spectra
- Study of systematic uncertainties

Back up slides

New experiment conditions

Shieldings have been added around the beam line.

Polyethylene doped with ⁸B for neutron capture Lead wall for gammas

Lead shield on backing detectors to improve gammas background

