

Grenoble Data (February 2019) - June 2019

O. Guillaudin, J-F. Muraz, P. Knight, I. Katsioulas, A. Dastgheibi, D. Santos

Quick analysis with TANGO , key points... and an IQF preliminary measurements of H in CH_4 !

Data Taken

- Runs (tb07c001-30) CH₄ (100%) at 100 mbar
- Data taken with electrons (0.8 keV- 15 keV), and Protons (3 keV – 15 keV)
- Detector was stable against rate changes and any gain/rise time changes recover immediately
- No sparks

The rod mounted diameter= 3 mm

Source

- COMIMAC source is an electron cyclotron resonance source producing ions and electrons which are extracted by a well known (< 0.5%) electric field
- Energies from ~0.5 keV to 40 keV for both electrons and ions
- Directed through a 1 um hole in a 13 um stainless steel plate to the detector – pressure difference of about 8 orders of magnitude between the detector and source

S30 coupled to COMIMAC

NEWS-G, Annual Meeting, Grenoble, June 12_5^{th} 2019

Electrons (2 keV) - Raw data for fitting purposes (only on the risetime < 0.015)

Electrons (10 keV) - Raw data

Electrons (0.8 keV) - Raw data

Electron Linearity

-tb07c001-13

Protons (15 keV)

Protons (6 keV) – Raw data

Protons (4 keV) – Raw data

Protons (3 keV) – Raw data

Ionization Quenching Factors of H in pure CH₄ 100 mbar (preliminary)

Quenching CH4 (100 mbar) Ne/CH4 10% (1 bar)

Conclusions

- We got a high quality of data in pure CH₄ at 100 mbar
- We have to improve the fits of this preliminary data analysis
- We have to study the impact of the pressure in pure CH₄
 (higher the pressure lower the amount of ionization)
- We have confirmed the important differences with respect to SRIM simulations in CH_4 ! (to be confirmed in Ne + 10% CH_4)
- We need to confirm the very interesting effect (first time experimentally observed) concerning the impact of the "recoil ionization" at low energies !!

Preliminary results (Tango fits) shown November 2018

NEWS-G Meeting, Grenoble, June 12th 2019

D. Santos

IQF of 20 Ne in Ne + 10% CH4 (1 bar)

S30 With Wien filter

μmégas (diameter=60 mm gap=256 μm) At 6 cm from the spherical surface

The IQF does not depend on the detector used to measured it.

The IQF depends on : the nucleus, the energy and the medium (gas and pressure) NEWS-G Meeting, Grenoble, June 12th 2019 D. Santos

Drift: 133 V/cm Gain: 500 V

Preamp: LPSC n°8

Pic : 6628 ADU

Sigma: 15.6 %

20 keV Neon

Drift: 133 V/cm Gain: 500 V

Preamp: LPSC n°8

Pic : 4720 ADU

Sigma: 20 %

with Wien Filter

18

Drift: 133 V/cm Gain: 500 V

Preamp: LPSC n°8

Pic : 3922 ADU

Sigma: 19 %

10 keV Neon Drift: 133 V/cm Gain: 500 V

Preamp: LPSC n°8

Pic : 2024 ADU

Sigma: 30.2 %

Drift: 133 V/cm Gain: 500 V

Preamp: LPSC n°8

Pic: 1288 ADU

Sigma: 29.5 %

Conclusions (Nov. 30th 2018)

- The E field at the surface of S30 is too low (E = 4,4 V/cm every 1 kV) to collect without primary electron losses the low energy electrons or nuclear recoils
- With the configuration proposed (uMegas inside S30)
 we have measured the IQF of ²⁰Ne in Ne + 10% CH₄ at 1 bar
- A new data analysis is needed to improve the fits (e- and Ne) and to add some cuts.
- A new run at lower energies (E< 8 keV) is possible shortly and at different pressures.