
AMS-02 ANTIPROTONS ANALYSIS STRATEGY FOR DARK MATTER

Objective

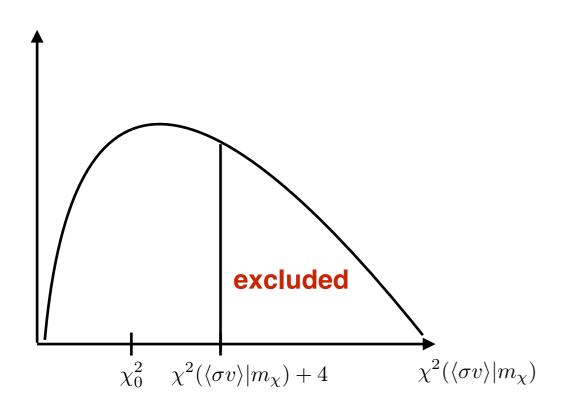
Updated limits on the DM annihilation XS $<\sigma v>$

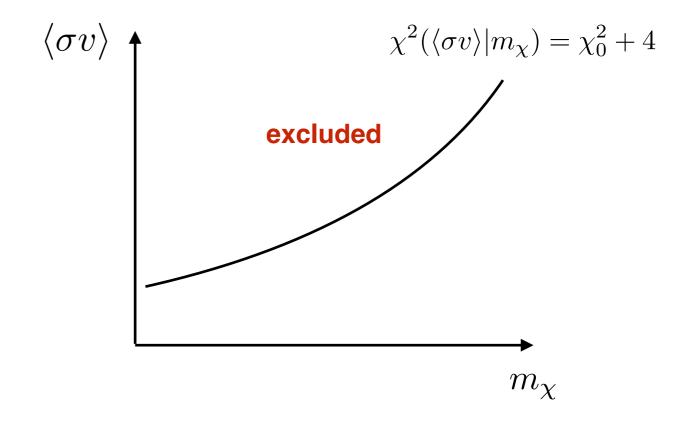
Antiprotons from DM: inputs

Particle physics

- DM mass m_{χ} and annihilation XS $<\sigma v>$
- Annihilation channels (branching ratios)
- pbar spectrum at source dN_{pbar}/dT_{pbar}
 PPPC4DMID, MicrOMEGAS (both based on Pythia)

Astrophysics


- DM halo profile in the Galaxy
 - NFW *McMillan+(2016)*
 - cored McMillan+(2016)
 - Einasto Catena&Ullio(2010)
- Transport in the Galaxy
 - BIG/SLIM/QUAINT (derived from 1D model —> 2D model from dictionary)
 - Size of the magnetic halo L (not determined by B/C, crucial for DM pbar)
 - Solar modulation


Limits on $<\sigma v>$

$$\Phi_{\bar{p}}^{\text{tot}}(m_{\chi}, \langle \sigma v \rangle) = \Phi_{\bar{p}}^{\text{II}} + \Phi_{\bar{p}}^{\text{DM}}(m_{\chi}, \langle \sigma v \rangle)$$

Sec. only (< \sigma v> = 0)
$$\chi^2$$
 Sec + DM
$$\chi^2(m_\chi, \langle \sigma v \rangle) \qquad + \text{ anni. channel}$$

• Statistical criterion to compare these two $\chi^2 \Rightarrow$ derive an upper limit on $<\sigma v>$ see Pierre's talk e.g. if $\chi^2(m_\chi, \langle \sigma v \rangle) - \chi_0^2 > 4 \Rightarrow <\sigma v>$ is excluded at 2σ CL (1 free parameter $(<\sigma v>)$)

Limits on $<\sigma v>$

$$\begin{split} \Phi_{\bar{p}}^{\rm tot}(m_\chi,\langle\sigma v\rangle) &= \Phi_{\bar{p}}^{\rm II} + \Phi_{\bar{p}}^{\rm DM}(m_\chi,\langle\sigma v\rangle) \\ \text{Sec. only ($<$\sigma$v> = 0)} & \text{Sec + DM} \\ \chi_0^2 & \chi^2(m_\chi,\langle\sigma v\rangle) \end{split}$$

Strategy 1 - no fit

- Sec. only: baseline from Boudaud+(2019) $\Rightarrow \chi_0^2$
- Sec. + DM: scan on $\langle \sigma v \rangle$, $m_{\chi} \Rightarrow \chi^2(m_{\chi}, \langle \sigma v \rangle)$

Pro: easy to implement, fast calculation

Cons: Transport uncertainty computed only for sec.

Strategy 2 - fit sec. pbar

Fit sec. pbar data (prod. XS parameters in nuisance (accounting for correlations))

- Sec. only: fit pbar data $\Rightarrow \chi_0^2$
- Sec. + DM: scan on $\langle \sigma v \rangle$, m_{χ} and fit pbar data $\Rightarrow \chi^2(m_{\chi}, \langle \sigma v \rangle)$

Pro: account for uncertainty in pbar prod. XS

Cons: fit for each couple ($<\sigma v>$, m_{χ}), long running time

Strategy 3 - combined fit

Fit: B/C (transport parameters) & H, He, C, O (Parents) & sec. pbar (XS parameters)

- Sec. only: fit B/C, H, He, C, O, pbar $\Rightarrow \chi_0^2$
- Sec. + DM: scan on $\langle \sigma v \rangle$, m_χ and fit B/C, H, He, C, O, pbar $\Rightarrow \chi^2(m_\chi, \langle \sigma v \rangle)$

Pro: account for uncertainty in pbar prod. XS, Parents, Transport

Cons: fit for each couple ($<\sigma v>$, m_{χ}), **very very** long running time, fit convergence?

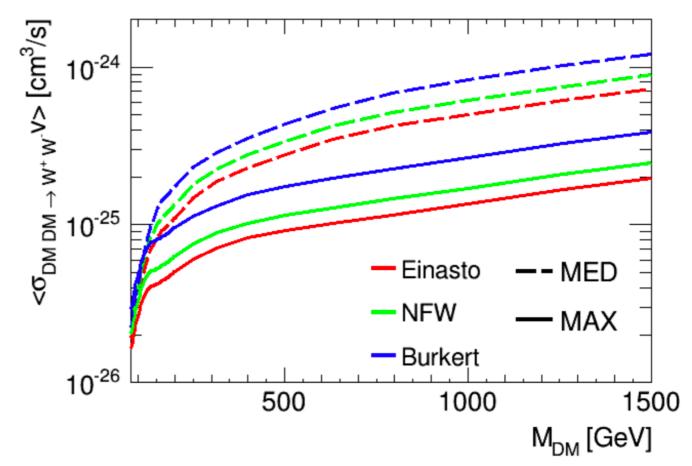
Antiprotons from DM: ranking uncertainties

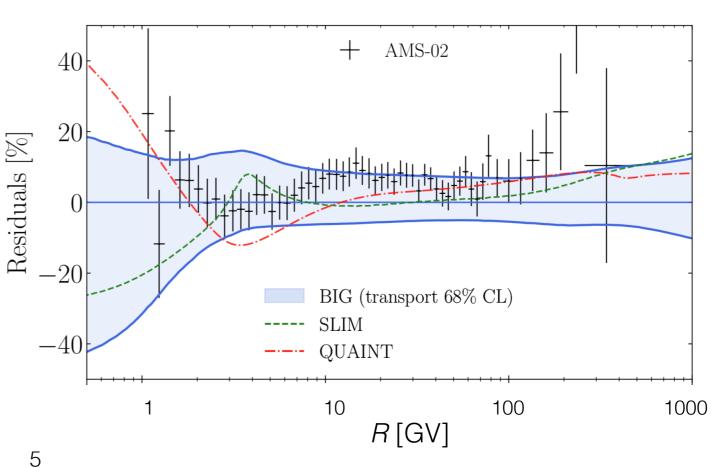
1. Size of the magnetic halo L

~ factor 10 (m χ ~1 TeV, $\chi\chi$ —>W+W-)

2. DM halo profile (core vs cusp)

~ factor 2 (m_{χ} ~1 TeV, $\chi\chi$ —>W+W-)


3. Transport in the Galaxy


< 10% for secondary pbar

4. Solar modulation

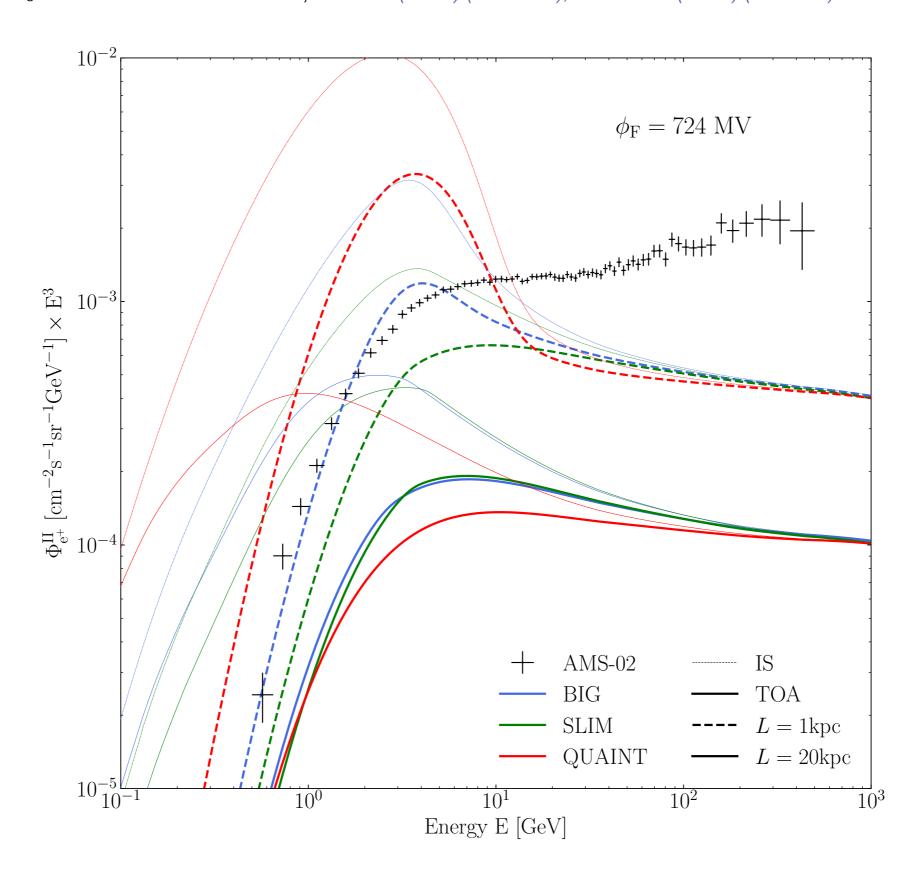
- charged sign dependance of ϕ_F (±50%?)
- important only for low masses (<10 GeV)

5. PPPC4DMID, Pythia?

Strategy 1: propagation of uncertainties

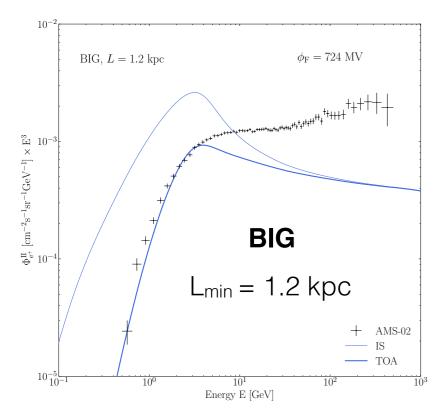
$$\chi^2 = \sum_{i,j} x_i \left(\mathcal{C}^{-1} \right)_{ij} x_j, \qquad x_i = \text{data}_i - \text{model}_i \qquad \mathcal{C} = \mathcal{C}^{\text{data}} + \mathcal{C}^{\text{model}}$$

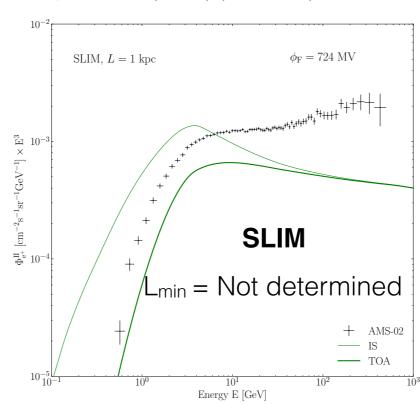
Secondaries

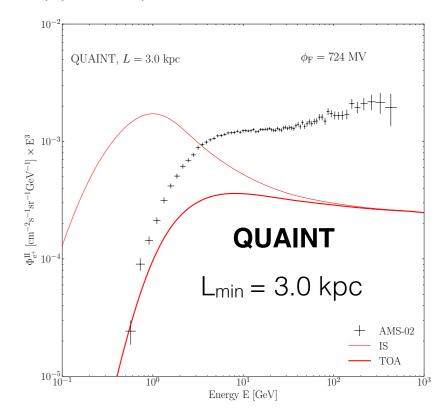

Transport, Parents and XS uncertainties from cov. matrix

Primaries

- Halo size L: constraints from radioactive nuclei and/or e+
 - bracket uncert. w/ L_{min}=1kpc and L_{max}=R=20kpc
 - determine a pdf for L w/ radioactive nuclei
- DM profile: bracket uncert. w/ cored and Einasto
- Transport: not computed for primaries
 - could be assed for each couple ($<\sigma v>$, m_{χ}) and each annihilation channel \rightarrow long process, we don't want to do that
 - assume the same uncertainty as for secondary (subdominant uncertainty)

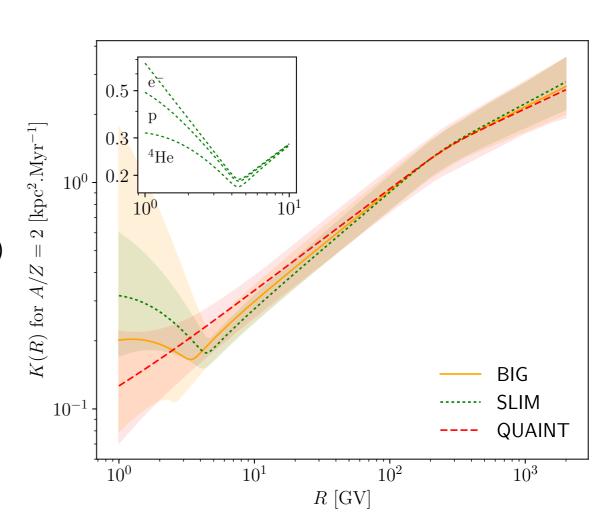

Constraining the halo size L w/ low energy e+


Lower bound on K_0 —> lower bound on L, Lavalle+(2014) (PAMELA), Boudaud+(2016) (AMS-02)


Constraining the halo size L w/ low energy e+

Lower bound on K₀ —> lower bound on L, Lavalle+(2014) (PAMELA), Boudaud+(2016) (AMS-02)

8


$$\Phi_{e^+}^{\rm II} \propto \frac{1}{\lambda_{\rm D}} \propto \frac{1}{\sqrt{K(R)}}$$

BIG, SLIM: $R \searrow \Rightarrow K \nearrow \Rightarrow flux \searrow$

- no uncertainty on transport parameters
- no uncertainty on solar modulation ($\phi_F = 724 \text{ MV fixed}$)
- Accounting for more uncertainties $\Rightarrow L_{min} \searrow$

Not possible to constraint L with e+

What about radioactive species?
see David's, Nathanael's and Gilles's talks

DM constraints from AMS-02 pbar - a roadmap

- Transport of primary pbar in USINE (almost done)
- Import DM pbar spectra at source from e.g.: PPPC4DMID
- Propagation of uncertainties: depend on the strategy
 - First step: fixed L
 - PDF for L: updated MIN-MED-MAX
 - → analysis on the halo size L could be done in parallel
- Define the statistical test to use to derive upper limits on $\langle \sigma v \rangle$
 - chi2 distribution
 - KS distance distribution?
- Derive constraints for each annihilation channel