## Constraining the MSSM Higgs sector at the LHC and beyond

Henning Bahl

DESY, Hamburg

Séminaire théorie

5.2.2020, LPSC Grenoble

| Intro |            |       |         |       |    |
|-------|------------|-------|---------|-------|----|
| 00000 | 0000000000 | 00000 | 0000000 | 00000 | 00 |

#### Introduction

Higgs mass calculation

Higgs benchmark scenarios

Accessing the low  $\tan\beta$  region

HL-LHC and ILC projections

Conclusions

| Intro | Higgs mass | Higgs benchmark scenarios | Low tan $\beta$ region | HL-LHC and ILC projections |  |
|-------|------------|---------------------------|------------------------|----------------------------|--|
| 00000 |            |                           |                        |                            |  |
|       |            |                           |                        |                            |  |

#### Introduction

- Higgs mass calculation
- Higgs benchmark scenarios
- Accessing the low  $\tan\beta$  region
- HL-LHC and ILC projections
- Conclusions

| Intro<br>0●0000 | Higgs mass<br>00000000000 | Higgs benchmark scenarios<br>00000 |  |  |
|-----------------|---------------------------|------------------------------------|--|--|
|                 |                           |                                    |  |  |

## Motivation

Current situation:

- no direct evidence for BSM physics at LHC yet
- $\blacktriangleright$  most known particles studied intensively confirming SM predictions

Where to look for new physics? Obvious candidate: the  ${\mbox{Higgs boson}}$ 

- Higgs boson properties still leave room for deviations from SM,
- Higgs boson can be coupled easily to BSM particles,
- ► Why should there be only one scalar particle? → Searches for additional Higgs bosons.

How much can we learn from current Higgs measurements about extended Higgs sectors?

| Intro |            |       |        |       |    |
|-------|------------|-------|--------|-------|----|
| 00000 | 0000000000 | 00000 | 000000 | 00000 | 00 |

## Higgs measurements: examples

Higgs mass: [Aad et al., 1503.07589]

$$M_h^{ ext{exp}} = 125.08 \pm 0.21 ext{ (stat.)} \pm 0.11 ext{ (sys.)}$$
 GeV



[1909.02845,ATLAS]



3

m<sub>µ⁺</sub> (TeV)

[2001.07763,CMS]



 $\Rightarrow$  Interpret constraints in specific model. Discussed today: MSSM

## The MSSM Higgs sector – potential

Two Higgs doublets

$$\Phi_i = \begin{pmatrix} \phi_i^+ \\ \frac{1}{\sqrt{2}} (v_i + \phi_i + i\chi_i) \end{pmatrix},$$

general THDM Higgs potential has 9 non-SM parameters

$$\begin{split} &V_{\mathsf{THDM}}(\Phi_1, \Phi_2) = m_{11}^2 \, \Phi_1^{\dagger} \Phi_1 + m_{22}^2 \, \Phi_2^{\dagger} \Phi_2 - \left(m_{12}^2 \Phi_1^{\dagger} \Phi_2 + \mathrm{h.c.}\right) \\ &+ \frac{1}{2} \lambda_1 (\Phi_1^{\dagger} \Phi_1)^2 + \frac{1}{2} \lambda_2 (\Phi_2^{\dagger} \Phi_2)^2 + \lambda_3 (\Phi_1^{\dagger} \Phi_1) (\Phi_2^{\dagger} \Phi_2) + \lambda_4 (\Phi_1^{\dagger} \Phi_2) (\Phi_2^{\dagger} \Phi_1) \\ &+ \left(\frac{1}{2} \lambda_5 (\Phi_1^{\dagger} \Phi_2)^2 + \lambda_6 (\Phi_1^{\dagger} \Phi_1) (\Phi_1^{\dagger} \Phi_2) + \lambda_7 (\Phi_2^{\dagger} \Phi_2) (\Phi_1^{\dagger} \Phi_2) + \mathrm{h.c.}\right), \end{split}$$

SUSY reduces these to 2

$$\lambda_1 = \lambda_2 = rac{1}{4}(g^2 + g_y^2), \lambda_3 = rac{1}{4}(g^2 - g_y^2), \lambda_4 = -rac{1}{2}g^2, \lambda_{5,6,7} = 0$$

 $\rightarrow \text{ predictive model!}$ 

### The MSSM Higgs sector – mass eigenstates

Diagonalizing the Higgs mass matrices yields mass eigenstates

$$\begin{pmatrix} h \\ H \end{pmatrix} = R(\alpha) \begin{pmatrix} \phi_1 \\ \phi_2 \end{pmatrix}, \begin{pmatrix} A \\ G \end{pmatrix} = R(\beta) \begin{pmatrix} \chi_1 \\ \chi_2 \end{pmatrix}, \begin{pmatrix} H^{\pm} \\ G^{\pm} \end{pmatrix} = R(\beta) \begin{pmatrix} \phi_1^{\pm} \\ \phi_2^{\pm} \end{pmatrix}$$

 $\rightarrow$  five physical Higgs states: h, H, A, H^{\pm}

Two non-SM input parameters: M<sub>A</sub> and tan β = v<sub>2</sub>/v<sub>1</sub>,
 tree-level relations:

$$\begin{split} m_{h,H}^2 &= \frac{1}{2} \left( M_A^2 + M_Z^2 \mp \sqrt{(M_A^2 + M_Z^2)^2 - 4M_A^2 M_Z^2 \cos^2 2\beta} \right), \\ m_{H^{\pm}}^2 &= M_A^2 + M_W^2, \\ \tan 2\alpha &= \frac{M_A^2 + M_Z^2}{M_A^2 - M_Z^2} \tan 2\beta, \end{split}$$

## The MSSM Higgs sector – decoupling limit

Decoupling limit,  $M_A \gg M_Z$ , implies:

masses:

$$egin{aligned} m_h^2 &
ightarrow M_Z^2\cos^2(2eta), \ m_H^2 &
ightarrow M_A^2 + M_Z^2\sin^2(2eta), \end{aligned}$$

 $\Rightarrow$  all Higgses, apart from *h*, decouple.

couplings:

$$\alpha \to \beta - \pi/2$$

 $\Rightarrow$  couplings of *h* boson SM-like

Yukawa sector: THDM type II

$$g_{Hbb}/g_{hbb} \sim \tan eta, \ g_{H au au}/g_{h au au} \sim aneta, \ g_{Htt}/g_{htt} \sim 1/ aneta$$
  
 $g_{Abb}/g_{hbb} \sim aneta, \ g_{A au au}/g_{h au au} \sim aneta, \ g_{Att}/g_{htt} \sim 1/ aneta$ 

| Higgs mass | Higgs benchmark scenarios | Low tan $\beta$ region | HL-LHC and ILC projections |  |
|------------|---------------------------|------------------------|----------------------------|--|
| 0000000000 |                           |                        |                            |  |
|            |                           |                        |                            |  |

#### Introduction

#### Higgs mass calculation

Higgs benchmark scenarios

Accessing the low  $\tan \beta$  region

HL-LHC and ILC projections

Conclusions

| Higgs mass | Higgs benchmark scenarios | Low tan $\beta$ region | HL-LHC and ILC projections |  |
|------------|---------------------------|------------------------|----------------------------|--|
| 0000000000 |                           |                        |                            |  |
|            |                           |                        |                            |  |

#### Special feature of MSSM

Mass of lightest CP-even Higgs,  $M_h$ , is calculable in terms of model parameters  $\Rightarrow$  can be used as a precision observable

▶ at tree-level  $M_h^2 \simeq M_Z^2 \cos^2(2\beta) \le M_Z^2$ 

*M<sub>h</sub>* is however heavily affected by loop corrections (up to ~ 100%)

To fully profit from experimental precision, higher order calculations are needed. Three approaches are used:

- Fixed-order (FO) approach,
- effective field theory (EFT) approach,
- hybrid approach.

| Higgs mass | Higgs benchmark scenarios | Low tan $\beta$ region | HL-LHC and ILC projections |  |
|------------|---------------------------|------------------------|----------------------------|--|
| 0000000000 |                           |                        |                            |  |
|            |                           |                        |                            |  |

#### Fixed-order techniques



$$M_{h}^{2} = m_{h}^{2} + \frac{6y_{t}^{4}}{(4\pi)^{2}}v^{2}\left[\ln\frac{M_{\tilde{t}}^{2}}{M_{t}^{2}} + \left(\frac{X_{t}}{M_{\tilde{t}}}\right)^{2} - \frac{1}{12}\left(\frac{X_{t}}{M_{\tilde{t}}}\right)^{4}\right] + \dots$$

• Stop mass scale 
$$M_{ ilde{t}} = \sqrt{M_{ ilde{t}_1} M_{ ilde{t}_2}}$$
,

► status:  $\mathcal{O}(\text{full } 1L, \alpha_s(\alpha_b + \alpha_t), (\alpha_b + \alpha_t)^2, \alpha_s^2 \alpha_t).$ [1708.05720,1802.09886,1901.03651,1910.02094...]

#### Advantages and disadvantages:

- + Precise for low SUSY scales,
- but for high scales  $\ln(M_{\tilde{t}}^2/M_t^2)$  terms spoil convergence of perturbative expansion.



- $\blacktriangleright$  Integrate out all SUSY particles  $\rightarrow$  SM as EFT,
- Higgs self-coupling fixed at matching scale

$$\lambda(M_{\rm SUSY}) = \frac{1}{4}(g^2 + g_y^2) + \frac{6y_t^4}{(4\pi)^2} \left[ \left(\frac{X_t}{M_{\rm SUSY}}\right)^2 - \frac{1}{12} \left(\frac{X_t}{M_{\rm SUSY}}\right)^4 \right],$$

- run Higgs self-coupling down to electroweak scale,
- calculate Higgs mass:  $M_h^2 = \lambda(M_t)v^2 + \dots$ ,
- status: full LL+NLL, O(α<sub>s</sub>, α<sub>t</sub>, α<sub>b</sub>) NNLL, partial N<sup>3</sup>LL. [1703.08166,1807.03509,1807.03509,1908.01670,...]

#### Advantages and disadvantages:

- + Precise for high SUSY scales (logs resummed),
- but for low scales  $O(M_t/M_{SUSY})$  terms are missed if higher-dimensional operators are not included.

## How to deal with intermediary SUSY scales?

For sparticles in the LHC range, both logs and suppressed terms might be relevant. We could try to improve

- $\blacktriangleright$  fixed-order calculation  $\rightarrow$  need to calculate more three- and two-loop corrections,
- $\blacktriangleright$  EFT calculation  $\rightarrow$  need to include higher-dimensional operators into calculation.

or ...

### Hybrid approach

Combine both approaches to get precise results for both regimes

Such an approach is implemented e.g. in FeynHiggs [HB,Hahn,Heinemeyer,Hollik,PaBehr,Rzehak,Weiglein;1312.4937,1608.01880,1706.0034,1812.06452] other approaches: 1609.00371,1703.03267,1710.03760,1910.03595; other codes: FlexibleEFTHiggs, SARAH/SPheno

## Procedure in FeynHiggs

- 1. Calculation of diagrammatic fixed-order self-energies  $\hat{\Sigma}_{\textit{hh}}$
- 2. Calculation of EFT prediction  $\lambda(M_t)v^2$
- 3. Add non-logarithmic terms contained in fixed-order result and the logarithms contained in EFT result

$$\hat{\Sigma}_{hh}(m_h^2) \longrightarrow \left[\hat{\Sigma}_{hh}(m_h^2)\right]_{
m nolog} - \left[v^2 \lambda(M_t)\right]_{
m log}$$

In practice, this is achieved by using subtraction terms.

Additional complication:

FH by default uses OS scheme, for EFT calculation however  $\overline{\text{DR}}$  parameters needed (i.e.  $X_t^{\overline{\text{DR}}}$ )  $\rightarrow$  1L log only conversion of  $X_t$  sufficient



## Comparison of approaches [HB,Heinemeyer,Hollik,Weiglein,1912.04199]

#### Single-scale scenario with all non-SM particles at $M_{SUSY}$



#### "Rule of thumb"

Remaining theoretical uncertainties (for  $\overline{\text{DR}}$  stop input parameter):  $X_t/M_{\text{SUSY}} = 0 \rightarrow \Delta M_h \sim 0.5 \text{ GeV},$  $X_t/M_{\text{SUSY}} = \sqrt{6} \rightarrow \Delta M_h \sim 1 \text{ GeV}$ 

Slightly higher for OS stop input parameters.

## Remaining uncertainties – individual sources



Uncertainty estimate dominated by:

- Uncertainty from higher order threshold corrections:
  - vary matching scale between SM and MSSM,
  - reexpress treshold correction in terms of  $h_t^{\text{MSSM}}$  instead of  $y_t^{\text{SM}}$ .
- Uncertainty of SM input couplings:
  - $y_t(M_t)$  extracted at the 2- or 3-loop level out of OS top mass.

## What happens in non-degenerate scenarios?

Large hierarchy between SUSY particles  $\rightarrow$  EFT tower needed.

EFTs (NNLL accuracy) implemented in FeynHiggs:

- SM (resums  $\ln(M_{\tilde{t}}/M_t)$ ),
- SM+EWinos (resums  $\ln(M_{\tilde{t}}/M_{\tilde{\chi}}))$ ,
- SM+Gluino (resums  $\ln(M_{\tilde{t}}/M_{\tilde{g}})$  if  $M_{\tilde{g}} < M_{\tilde{t}}$ ),
- SM+EWinos+Gluino,
- THDM (resums  $\ln(M_{\tilde{t}}/M_A)$ ),
- ► THDM+EWinos,
- ► THDM+EWinos+Gluino.

For most phenomenological interesting scenarios, all large logs are resummed  $\Rightarrow$  theoretical uncertainty under control.

| Higgs mass  | Higgs benchmark scenarios | Low tan $\beta$ region | HL-LHC and ILC projections |  |
|-------------|---------------------------|------------------------|----------------------------|--|
| 00000000000 |                           |                        |                            |  |
|             |                           |                        |                            |  |

## One exception: $M_{\tilde{g}} \gg M_{\tilde{t}}$

Increasingly relevant due to tightening LHC gluino limits.



Large uncertainty due to  $M_3$  power-enhanced terms appearing at the two-loop level in  $\overline{\text{DR}}$  EFT calculation (do not appear in OS scheme).

#### Needed EFT: MSSM without gluino

Expressions for unknown so far ...

|        | Higgs mass |       |        |       |    |
|--------|------------|-------|--------|-------|----|
| 000000 | 0000000000 | 00000 | 000000 | 00000 | 00 |

# Solution: Absorb power-enhanced terms into renormalization scheme [HB,Sobolev,Weiglein,1912.10002]

Use  $\overline{\text{MDR}}$  instead of  $\overline{\text{DR}}$  in EFT,

$$\begin{pmatrix} m_{\tilde{t}L,R}^{\overline{\text{MDR}}} \end{pmatrix}^2 = \left( m_{\tilde{t}L,R}^{\overline{\text{DR}}} \right)^2 \left[ 1 + \frac{\alpha_s}{\pi} C_F \frac{|M_3|^2}{m_{\tilde{t}L,R}^2} \left( 1 + \ln \frac{Q^2}{|M_3|^2} \right) \right]$$
$$\chi_t^{\overline{\text{MDR}}}(Q) = \chi_t^{\overline{\text{DR}}}(Q) - \frac{\alpha_s}{\pi} C_F M_3 \left( 1 + \ln \frac{Q^2}{|M_3|^2} \right),$$

resums all  $\mathcal{O}(\alpha_s^n M_3^{2n}, \alpha_s^n M_3^n)$  terms.

↓ Drastically reduced uncertainty.



| Higgs mass | Higgs benchmark scenarios |  |  |
|------------|---------------------------|--|--|
|            | 00000                     |  |  |

#### Introduction

Higgs mass calculation

#### Higgs benchmark scenarios

Accessing the low  $\tan \beta$  region

HL-LHC and ILC projections

Conclusions

## Constraints on the MSSM Higgs sector

Considered constraints:

properties of the Higgs boson discovered at the LHC:

- mass,
- couplings.
- searches for additional Higgs bosons.
- $\rightarrow$  Evaluate constraints in Higgs benchmark scenarios.

Additional constraints not considered here:

- flavour constraints,
- vacuum stability,
- EWPOs,

**>** . . .

# Higgs benchmark scenarios – why do we need them?

- MSSM has large number of free parameters,
- interpretation of Higgs properties and searches for additional Higgs bosons would require large parameter scans.

#### ₩

Focus on benchmark scenarios with only two free parameters:

- ▶ Typically presented in  $M_A$ -tan  $\beta$  plane (or  $M_{H^{\pm}}$ -tan  $\beta$ ),
- fix stop mass scale and other parameters such that SM-like 125 GeV exist,
- each scenario has a different phenomenology.

Existing benchmark scenarios outdated  $\rightarrow$  define new scenarios.

[hep-ph/9912223,hep-ph/0202167,hep-ph/0009212,1302.7033,1512.00437]

## Six scenarios with sfermion mass scale $M_{ m SUSY} \sim 1.5~ m TeV$

 $[{\sf Bagnaschi}, {\sf HB}, {\sf Fuchs}, {\sf Hahn}, {\sf Heinemeyer}, {\sf Liebler}, {\sf Patel}, {\sf Slavich}, {\sf Stefaniak}, {\sf Wagner}, {\sf Weiglein}, 1808.07542]$ 

#### Defined using:

- ▶ FeynHiggs  $\rightarrow$  Higgs masses and branching ratios,
- ▶ SusHi  $\rightarrow$  Higgs production cross-sections,
- ▶ HiggsBounds  $\rightarrow$  direct searches for extra Higgs bosons,
- ▶ HiggsSignals  $\rightarrow$  SM-like Higgs signal strengths.

Benchmark scenarios:

- $M_h^{125}$  scenario  $\rightarrow$  all SUSY particles at the TeV scale,
- $M_h^{125}(\tilde{\tau})$  scenario  $\rightarrow$  light Stau, Bino and Winos,
- $M_h^{125}( ilde{\chi})$  scenario ightarrow light Bino, Winos and Higgsinos,
- ▶  $M_h^{125}$ (alignment) scenario → alignment without decoupling,
- ▶  $M_{H}^{125}$  scenario → heavy CP-even Higgs is SM-like,
- ▶  $M_{h_1}^{125}(\text{CPV})$  scenario  $\rightarrow CP$ -violation in the Higgs sector.

## Six scenarios with sfermion mass scale $M_{ m SUSY} \sim 1.5~ m TeV$

 $[{\sf Bagnaschi}, {\sf HB}, {\sf Fuchs}, {\sf Hahn}, {\sf Heinemeyer}, {\sf Liebler}, {\sf Patel}, {\sf Slavich}, {\sf Stefaniak}, {\sf Wagner}, {\sf Weiglein}, 1808.07542]$ 

#### Defined using:

- ▶ FeynHiggs  $\rightarrow$  Higgs masses and branching ratios,
- ▶ SusHi  $\rightarrow$  Higgs production cross-sections,
- ▶ HiggsBounds  $\rightarrow$  direct searches for extra Higgs bosons,
- ▶ HiggsSignals  $\rightarrow$  SM-like Higgs signal strengths.

Benchmark scenarios:

- ▶  $M_h^{125}$  scenario → all SUSY particles at the TeV scale,
- $M_h^{125}( ilde{ au})$  scenario ightarrow light Stau, Bino and Winos,
- $M_h^{125}(\tilde{\chi})$  scenario  $\rightarrow$  light Bino, Winos and Higgsinos,
- ▶  $M_h^{125}$ (alignment) scenario → alignment without decoupling,
- ▶  $M_{H}^{125}$  scenario → heavy CP-even Higgs is SM-like,
- ▶  $M_{h_1}^{125}(\text{CPV})$  scenario  $\rightarrow C\mathcal{P}$ -violation in the Higgs sector.

ntro Higgs mass **Higgs benchmark scenarios** Low tan β region HL-LHC and ILC projections Conclusions 000000 0000000000 **0000●** 0000000 00000 00000 00000

 $M_h^{125}$  and  $M_h^{125}(\tilde{\chi})$  scenarios

$$\begin{split} M_{Q_3} &= M_{U_3} = M_{D_3} = 1.5 \ \text{TeV}, \quad M_{L_3} = M_{E_3} = 2 \ \text{TeV} \\ M_3 &= 2.5 \ \text{TeV}, \quad X_t = 2.8 \ \text{TeV}, \quad A_b = A_\tau = A_t \,. \end{split}$$



Blue: Excluded by direct searches for heavy Higgs bosons,

hashed: Excluded by SM-like Higgs signal strengths / mass.

| Higgs mass | Higgs benchmark scenarios | Low tan $\beta$ region | HL-LHC and ILC projections |  |
|------------|---------------------------|------------------------|----------------------------|--|
|            |                           | 000000                 |                            |  |
|            |                           |                        |                            |  |

#### Introduction

- Higgs mass calculation
- Higgs benchmark scenarios
- Accessing the low  $\tan\beta$  region
- HL-LHC and ILC projections
- Conclusions





## Low tan $\beta$ region?!

Region of  $\tan \beta \lesssim 8$  excluded, since mass  $M_h < 125 \pm 3$  GeV:  $m_h^2 \xrightarrow{t_\beta \to 1} 0 \Rightarrow$  need to raise  $M_{\text{SUSY}}$  to push  $M_h$  upwards.



## Benchmark scenarios for the low tan $\beta$ region

[HB,Liebler,Stefaniak,1901.05933]

Use THDM-EFT calculation to define low-tan  $\beta$  benchmark scenarios.

#### Concept

Take existing scenarios and adjust  $M_{\rm SUSY}$  at every point such that  $M_h \sim 125$  GeV.

```
(upper limit: M_{\rm SUSY} \leq 10^{16} {
m GeV})
```

Two low-tan  $\beta$  benchmark scenarios:

- $M_{h,\text{EFT}}^{125}$  scenario resembling  $M_h^{125}$  scenario,
- $M_{h,\text{EFT}}^{125}(\tilde{\chi})$  scenario resembling  $M_h^{125}(\tilde{\chi})$  scenario.

Only differences:  $M_{SUSY}$  and  $X_t$  (set to zero for EFT scenarios)

|                                                 | Higgs mass<br>00000000000 | Higgs benchmark scenarios<br>00000 | Low tan β region<br>000●000 |  |
|-------------------------------------------------|---------------------------|------------------------------------|-----------------------------|--|
| <i>M</i> <sup>125</sup> <sub><i>h</i>,EFT</sub> | - scenario                |                                    |                             |  |

#### Similar to hMSSM scenario [1307.5205,1307.5205,...,Djouadi et al.]



- ▶ Gray: *M<sub>h</sub>* < 122 GeV,</p>
- blue: Excluded by direct searches for heavy Higgs bosons,
- hashed: Excluded by Higgs signal strengths.

| Higgs mass | Higgs benchmark scenarios | Low tan $\beta$ region | HL-LHC and ILC projections |  |
|------------|---------------------------|------------------------|----------------------------|--|
|            |                           | 0000000                |                            |  |
|            |                           |                        |                            |  |

### hMSSM comparison



• Discrepancies for low  $M_A$  and tan  $\beta$ ,

on-going effort to understand origin.



## $M_{h,\text{EFT}}^{125}(\tilde{\chi})$ scenario



▶ Gray: *M<sub>h</sub>* < 122 GeV,</p>

- blue: Excluded by direct searches for heavy Higgs bosons,
- hashed: Excluded by Higgs signal strengths,
- interesting  $H, A \rightarrow \tilde{\chi} \tilde{\chi} \rightarrow W^{\pm}, Z$  signatures.



 $M_{h,\text{EFT}}^{125}(\tilde{\chi})$  scenario –  $H, A, H^{\pm} \rightarrow \tilde{\chi}\tilde{\chi}$ 



- Interesting multilepton signatures,
- no experimental searches yet,
- electroweakino production via heavy Higgs can exceed direct production. [Gori et al.,1811.11918]

| Higgs mass | Higgs benchmark scenarios | Low tan $\beta$ region | HL-LHC and ILC projections |  |
|------------|---------------------------|------------------------|----------------------------|--|
|            |                           |                        | •0000                      |  |
|            |                           |                        |                            |  |

#### Introduction

- Higgs mass calculation
- Higgs benchmark scenarios
- Accessing the low  $\tan \beta$  region
- HL-LHC and ILC projections
- Conclusions



## HL-LHC projections – $M_h^{125}$ and $M_{h,EFT}^{125}$ scenarios

[HB,Bechtle,Heinemeyer,Liebler,Stefaniak,Weiglein,to appear]



Assumed discovered Higgs to have SM couplings.

 $\begin{array}{cccc} {\rm Intro} & {\rm Higgs\ mass} & {\rm Higgs\ benchmark\ scenarios} & {\rm Low\ tan\ }\beta\ {\rm region} \\ 000000 & 000000000 & 00000 & 0000000 \\ \end{array}$ 

HL-LHC and ILC projections

Conclusions 00

## ILC projections – $M_h^{125}$ scenario



Assumed discovered Higgs to have SM couplings.

 Intro
 Higgs mass
 Higgs benchmark scenarios
 Low tan β region
 HL-LH

 000000
 000000000
 00000
 000000
 00000
 00000



Assumed discovered Higgs to have SM couplings.

| Higgs mass | Higgs benchmark scenarios | Low tan $\beta$ region | HL-LHC and ILC projections |  |
|------------|---------------------------|------------------------|----------------------------|--|
|            |                           |                        | 00000                      |  |
|            |                           |                        |                            |  |

# What if $M_{h,\text{EFT}}^{125}(\tilde{\chi})$ scenario is realized?



Assumed discovered Higgs to have couplings as predicted for  $M_A = 1$  TeV and tan  $\beta = 3$ .

| Higgs mass | Higgs benchmark scenarios | Low tan $\beta$ region | HL-LHC and ILC projections | Conclusions |
|------------|---------------------------|------------------------|----------------------------|-------------|
|            |                           |                        |                            | 00          |
|            |                           |                        |                            |             |

#### Introduction

- Higgs mass calculation
- Higgs benchmark scenarios
- Accessing the low  $\tan\beta$  region
- HL-LHC and ILC projections
- Conclusions

| Higgs mass | Higgs benchmark scenarios | Low tan $\beta$ region | HL-LHC and ILC projections | Conclusions |
|------------|---------------------------|------------------------|----------------------------|-------------|
|            |                           |                        |                            | 00          |
|            |                           |                        |                            |             |

## Conclusions

Higgs mass calculation:

- ► Hybrid approach combines fixed-order and EFT approaches → precise prediction for all SUSY scales.
- theoretical uncertainty of  $\lesssim 1$  GeV.

Higgs benchmark scenarios:

- help to interpret LHC results,
- Higgs couplings  $\rightarrow$  lower bound on  $M_A$  ( $M_A \gtrsim 600$  GeV),
- Higgs searches  $\rightarrow$  strong constraints for large tan  $\beta$ ,
- low tan  $\beta$  region challenging.

HL-LHC and ILC constraints:

- tightening constraints,  $M_A \gtrsim 900$  GeV,
- ▶ ILC beneficial to pinpoint specific model in case of deviation.

| Higgs mass | Higgs benchmark scenarios | Low tan $\beta$ region | HL-LHC and ILC projections | Conclusions |
|------------|---------------------------|------------------------|----------------------------|-------------|
|            |                           |                        |                            | 00          |
|            |                           |                        |                            |             |

## Conclusions

Higgs mass calculation:

- ► Hybrid approach combines fixed-order and EFT approaches → precise prediction for all SUSY scales.
- theoretical uncertainty of  $\lesssim 1$  GeV.

Higgs benchmark scenarios:

- help to interpret LHC results,
- Higgs couplings  $\rightarrow$  lower bound on  $M_A$  ( $M_A \gtrsim 600$  GeV),
- Higgs searches  $\rightarrow$  strong constraints for large tan  $\beta$ ,
- low tan  $\beta$  region challenging.

HL-LHC and ILC constraints:

- tightening constraints,  $M_A \gtrsim 900$  GeV,
- ▶ ILC beneficial to pinpoint specific model in case of deviation.

#### Thanks for your attention!

# $M_h^{125}( ilde{ au})$ and $M_h^{125}({ m CPV})$ scenarios



# $M_h^{125}$ (alignment) and $M_H^{125}$ scenarios

