

Training of a neural network to model the MYRRHA LEBT for reliability improvements

Presented by Mathieu Debongnie

PhD Student ACS/LPSC

In2p3

2

Introduction

- The MYRRHA project
- Low energy beam transport line

Machine learning

- Training databases
- Network performances
- Transferability

Conclusion & Prospects

MYRRHA

Multi-purpose hYbrid Research Reactor for High-tech Applications

Accelerator

(600 MeV - 4 mA proton)

CELERATORS AND

MYRRHA requirements

4

High power proton beam (up to 2.4 MW)

Proton energy	600 MeV	
Peak beam current	0.1 to 4.0 mA	
Repetition rate	1 to 250 Hz	
Beam duty cycle	10 ⁻⁴ to 1	
Beam power stability	< \pm 2% on a time scale of 100ms	
Beam footprint on reactor window	Circular Ø85mm	
Beam footprint stability	< \pm 10% on a time scale of 1s	
# of allowed beam trips on reactor longer than 3 sec	10 maximum per 3-month operation period	
# of allowed beam trips on reactor longer than 0.1 sec	100 maximum per day	
# of allowed beam trips on reactor shorter than 0.1 sec	unlimited	

Extreme reliability

MYRRHA schematics

ACS ACCELERATORS AND CRYOGENIC SYSTEMS

1. DOULT (LPSC/CMRS) -- January 201

5

CIERCIS

In2p3

Low Energy Beam Transport Line

10/07/2019 ML for MYRRHA LEBT reliability improvements, Grenoble, France - M. Debongnie

Beam current transmitted through the LEBT as a function of the solenoids focusing or the steering strength (current applied in the coils)

- $I_{Sol1}, I_{Sol2} \in [50, 110] \text{ A}, stepsize = 2 \text{ A}$
- $I_{source} = 8 \text{ mA}$
- $P = 2 \times 10^{-5}$ mbar
- $I_{St3} = 1 \text{ A}, I_{St4} = -0.5 \text{ A}$

- $I_{source} = 6 \text{ mA}$
- Space charge compensation = 99%

10/07/2019 ML for MYRRHA LEBT reliability improvements, Grenoble, France - M. Debongnie

Space charge effect

• Defocusing effect : Coulomb repulsion of charged particles inside the beam ACCELERATORS AND CRYOGENIC SYSTEMS

- 2 contributions (Lorentz): Electrostatic : repelling Force
 - Magnetic : attractive Force (charged particles in movement)

Radial force seen by one particle of a continuous (DC) cylindrical and homogenous beam

 $F_r = \frac{(1 - \beta_L^2)}{\beta_L} \frac{qI}{2\pi \epsilon_0 c} \cdot \frac{r}{R^2} (r < R) \qquad \begin{array}{l} \beta_L : \text{reduced speed} \\ \epsilon_0 : \text{vacuum permittivity} \\ q : charge \end{array}$

I : beam current

8

In2p3

• Complex phenomena, difficult to model, depends on many parameters : influence of the vacuum chamber walls, beam transverse and longitudinal distribution, different species/ions, residual gas interaction, etc.

Courtesy of N. Chauvin

- A solution to compensate the beam diverging effect in the LEBT :
- \rightarrow Use the Ionisation of the residual gas in the vacuum chamber.

• Objectives

Fast control and tuning for different linac beam modes (peak current, duty cycle)

• Why?

Classic simulation are slow Classic simulation don't reproduce experiments accurately

• How?

Training of an experimental model using supervised learning

ERATORS A

Neural Network

Can fit any continuous function

ERATORS A

Dataset

MYRRHA (SCK*CEN, Belgium)

• ~20000 measurements

12

Irontières

In2p3

Slices at different slits extensions

Input				Desired output
Current in steerer x4 [A]	Current in solenoid x2 [A]	Collimator opening x1 [m]	Pressure gauge x3 [bar]	Current in FC2 [A]

→ model $f(I_{st1}, I_{st2}, I_{st3}, I_{st4}, I_{so1}, I_{so2}, r_{coll} | p_1, p_2, p_3) = I_{FC2}$

CELERATORS AND

Model output

In2p3

Execution time $\approx 1 \text{ ms}$

RYOGENIC SYSTEMS

Model output

14 In2p3

Model output : Identified issues & improvements

ERATORS AN

16

Custieres

In2p3

LERATORS AN

Cycle utile \sim 0.4% x 50 mA x 3 MeV \cong 600 W

10/07/2019 ML for MYRRHA LEBT reliability improvements, Grenoble, France - M. Debongnie

RFQ prospect: IPHI collaboration

- Machine Learning model
 - Training of an experimental model is possible
 - Improvement to be made
 - Optimize training: solve over fit issues
 - Optimize neural network (minimize training/execution time): #neurons, #layers, ...
- Alternative
 - Particle Swarm Optimization
- Prospects
 - Training of a neural network controller
 - From desired current and RFQ transmission → solenoid settings
 - Applications to SC cavities fast fault-recovery

ACCELERATORS AND CRYOGENIC SYSTEMS

20

10/07/2019 ML for MYRRHA LEBT reliability improvements, Grenoble, France - M. Debongnie

LERATORS AND

- Execution time ${\sim}10~\mu s$

$$RMSE = \sqrt{\frac{\sum_{y_i} (y_i^{true} - y_i^{model})^2}{N_{y_i}}}$$

• Quality evaluation: RMS error

	MYRRHA	IPHI		
Outputs	Beam current [mA]	Beam current [mA]	RFQ transmission [%]	
RMSE on training dataset	0.09	0.66	1.25	
RMSE on validation dataset	0.10	0.79	1.62	
RMSE on test dataset	0.10	0.81	1.65	
RMSE on whole dataset	0.09	0.72	1.42	

ERATORS AN ENIC SYSTEMS

Validation data

IPHI (CEA Saclay, France)

• ~8000 measurements

Input		Desired output		
Current in solenoids [A]		Collimator opening [m]	Beam current output [mA]	Transmission [/]
I _{sol1}	I _{sol2}	r _{coll}	I _{Beam,out}	T_{RFQ}

Comparison Grenoble-LLN

23

 \succ I_{steererV} = -2 A

Particle Swarm Optimization

