Nuclear Structure of Exotic Kr and Br Isotopes Using FIPPS

Daniela Reygadas Tello

Supervisors – Caterina Michelagnoli, Grégoire Kessedjian

Institut Laue Langevin (ILL) Laboratoire de Physique Subatomique et de Cosmologie (LPSC) Université Grenoble Alpes (UGA)

Outline:

- 1. Current challenges in nuclear structure
- 2. Why Kr? The A \sim 100 region
- 3. Fission experimental campaign at the FIPPS instrument
- 4. Data analysis and results
- 5. Future perspectives
- 6. Summary

The nuclear landscape: expanding frontiers

Current challenges in nuclear physics:

- Expand the limits of known isotopes (~3000). Theoretical models predict the existence of an additional 4000 isotopes.
 - Explain characteristics of nuclei and their evolution across the nuclear
 chart.

NUCLEAR MODELS

1. Nuclear structure > 2. Why A~100 ?

> 4. Analysis & Results

Results > 5. Future perspectives

 \rightarrow 6. Summary

Nuclear models

The nuclear shell model:

- Analogous to atomic model
- Protons and neutrons occupy energy levels grouped in shells
- Magic numbers: 2, 8, 20, 28, 50, 82, 126

<u>Collective properties</u> (deformation, vibration)

No model explains all!

GOAL: obtain unified description of the nucleus

N, number of neutrons

Nuclear shapes

4. Analysis & Results

3. Experiment at FIPPS

Shape is a fundamental property of the nucleus

2. Why A~100?

- Few nuclei have spherical shape, variety of shapes can be observed
- Deformation is a consequence of collectivity

How can we experimentally determine the nuclear shape?

For even-even nuclei can use:

$$\boxed{R_{4/2} = E_{4_1^+} / E_{2_1^+}}$$

Vibrator: $E = \hbar \omega n$

Daniela Reygadas Tello

1. Nuclear structure

$$E_{rot} = \frac{\hbar^2}{2\mathscr{I}}J(J+1)$$

5. Future perspectives

6. Summary

Nucleon number

> 6. Summary

The A~100 island of deformation

- Neutron rich nuclei in this region (N~60, Z~40) exhibit a drastic **nuclear shape transition**: from nearly spherical (N=58) to strongly prolate (N=60)
- First observed for Zr (1970)

Where is the low Z limit of this island?

- No drastic transition in Kr isotopic chain? Delayed?
- Contradictory trend between R_{4/2} ratio and the transition probability, B(E2)

Motivation for my thesis:

More experimental information is needed on Kr chain to test state of the art theoretical models . Beyond mean field *T.R. Rodriguez PRC (2014)* Monte Carlo Shell Model *T. Togashi,PRL (2016)*)

5. Future perspectives

Daniela Reygadas Tello

Daniela Reygadas Tello

5. Future perspectives > 6. Summary

Production of exotic neutron rich isotopes: Nuclear fission

Daniela Reygadas Tello

The FIPPS Instrument

3. Experiment at FIPPS

FIssion Product Prompt γ -ray Spectrometer: "pencil-like" neutron beam + HPGe array

4. Analysis & Results

5. Future perspectives

6. Summary

Daniela Reygadas Tello

1. Nuclear structure

2. Why A~100?

Daniela Reygadas Tello

2. Why A~100? 3. Experiment at FIPPS 4. Analysis & Results

5. Future perspectives 6. Summary

Total γ -ray energy spectrum after fission

More than 100 different nuclei being populated in fission and emitting γ rays.

Active target

5. Future perspectives

6. Summary

Active target performance

The fission fragments are populated in excited states and deexcite via γ -ray emission.

As they are very neutron rich they undergo a series of beta decays. The beta-decay daughter will also emit γ rays

Daniela Reygadas Tello

5. Future perspectives

Efficiency calibration of FIPPS + IFIN array

5. Future perspectives

Results to be published, not included in this version of the presentation

5. Future perspectives > 6. Summary

Future perspectives

- \rightarrow Complete analysis on Br isotopic chain.
- → Spin assignment of excited states in Kr and Br using **angular correlations**:

0+->2+->0+, 142Ba (1176 & 359)

Daniela Reygadas Tello

Conclusion

- Nowadays a model that can describe all observed properties of nuclei across the nuclear chart does not exist: —> experimental nuclear data is required.
- The neutron rich Kr and Br isotopes lie at the boundary of an area of rapid shape change, providing an ideal testing ground for theoretical models.
- The isotopes of interest were produced using the ²³⁵U fission reaction at the FIPPS instrument of the ILL.
- Gamma-ray spectroscopy was used to obtain new excited levels in Kr and Br isotopic chains.

Acknowledgements

C. Michelagnoli, F. Kandzia, U. Köster, YH. Kim, M. Jentschel, H. Faust, M. Thomas, E. Ruiz-Martinez, P. Mutti, ... (ILL), G. Kessedjian, ... (LPSC Grenoble), N. Marginean, C. Mihai, R. Lica, S. Pascu, A. Turturica, ... (IFIN-HH), J. Dudouet, ...(IPNL Lyon), S. Leoni, F. Crespi, L. Iskra, ... (Univ. and INFN Milano), T. Materna (CEA Saclay), G. Bélier, J. Aupiais (CEA B. le Chatel)...

References

C. Michelagnoli *et al.* EPJ Web of Conferences 193, 04009 (2018)
M. Jentschel *et al.* JINST12 P11003 (2017)
J. Dudouet *et al.* PRL 118,162501 (2017)
Y.H. Kim *et al.* NIM B (2019), *in press*