Désintégration de mesons B_S en QCD sur réseaux

Pierre Henri Cahue Directeurs : Mariane Mangin-Brinet, Savvas Zafeiropoulos En collaboration avec : Benoît Blossier

Laboratoire de physique subatomique et cosmologique Grenoble, France

8 Juillet 2020

Introduction

- Pourquoi utiliser la QCD sur réseaux (LQCD)?
- Principe de la LQCD

2 Désintégration $B_S \rightarrow D_S$

- *V*_{*CKM*}
- Les corrélateurs
- Facteurs de forme

3 Conclusion et perspectives

La constante de couplage α_s

 α_s : paramètre fondamental de la ChromoDynamique Quantique (QCD)

 $\alpha_{\rm s}$ à basse énergie pose problème pour QCD

- α_s : l'intensité de l'interaction forte
- *α_s* est fonction de l'énergie
- à très haute énergie plus d'interaction
 → liberté asymptotique
- à basse énergie possible augmentation voir divergence d'α_s

La Théorie des perturbations

Théorie Quantique des Champs (QFT) trop complexe

- Résolution directe de l'interaction souvent impossible
- On transforme l'interaction en somme de perturbations
- On sait calculer chaque perturbation

- Développement en puissance d' α_s
- Complexité des termes augmente rapidement
- Leurs contributions deviennent faibles
- La série converge si $\alpha_s \ll 1$
- Converge vers la valeur physique

Limitation de la QCD : basse énergie \rightarrow convergence pas assurée

Discrétisation de l'espace-temps.

QCD à basse énergie :

- Augmentation du nombre d'interactions
- Particules virtuelles plus nombreuses et plus proches

Discrétisation de l'espace temps

- Point séparé d'une longueur a : la maille (Régularisateur)
- Les particules ont une distance minimale entre elles : a
- Les interactions sont des chemins sur les arrêtes
- Réseaux de taille finie \Rightarrow nombre d'interactions est dénombrable

- Quarks : particules soumises à l'interaction forte
- Gluons : particules médiatrices de l'interaction forte

La LQCD permet de calculer la QCD à basse énergie avec une erreur O(a)

La LQCD en chiffres.

- LQCD longtemps considérée comme non prédictive/limitée
- $\bullet~$ Puissance de calculs \Rightarrow LQCD sans quarks / gluon + champ moyen
- Puissance de calcul $\nearrow \Rightarrow$ ajout quarks, a \searrow , le volume \nearrow
- Les années 2010 \Rightarrow calculs à la masse physique
- La communauté s'est élargie mondialement répartie en collaborations (USQCD, HPQCD, ...) ainsi qu'en Europe (ETMC, ALPHA, BMW)
- Depuis 20 ans, la LQCD prédit des résultats utilisés en physique des particules

Calculés sur réseaux :

- *as*
- masses des quarks/mesons/hadrons
- constantes de désintégrations
- Fonction densité partonique (PDF)
- (g 2) ····

Simulation des champs en LQCD

- $_{
 m \wedge}$ 1 On se donne des paramètres : $lpha_{
 m {\it S}}$, masses, taille du réseaux \ldots
 - 2 On prend une action discrète de la QCD
 - 3 Chaque point du réseau : génèration aléatoire des champs \Leftrightarrow configuration
 - 4 Simulation d'un ensemble statistique de configurations (grandeur = moyenne)

On recommence avec un autre jeu de paramètres

Ens.	β	$a [\mathrm{fm}]$	V/a^4	$a\mu_{sea}$	m_{π} [MeV]	$m_{\pi} L$	N_{cfg}
A_2	3.8	0.098	$24^{3} \times 48$	0.0080	410	5.0	240
A_3				0.0110	480	5.8	240
B_1	3.9	0.085	$24^{3} \times 48$	0.0040	315	3.3	480
B_2				0.0064	400	4.1	240
B_3				0.0085	450	4.7	240
B_4				0.0100	490	5.0	240
B7	3.9	0.085	$32^{3} \times 64$	0.0030	275	3.7	240
B_6				0.0040	315	4.3	240
C_1	4.05	0.067	$32^{3} \times 64$	0.0030	300	3.3	240
C_2				0.0060	420	4.5	240
C_3				0.0080	485	5.2	240
D_1	4.2	0.054	$48^{3} \times 96$	0.0020	270	3.5	80
D_2		0.054	$32^3 \times 64$	0.0065	495	4.3	240

arXiv :1010.3659v2

Une extrapolation des jeux de paramètres vers les paramètres physiques nous donne le résultat final

Des champs vers les grandeurs physiques Les corrélateurs

Ce que l'on à a la fin de la simulation :

- Champs de gluons : matrices $U_{\mu}(n)$
- Les propagateurs des quarks $D^{(f)}(n|m)^{-1}$

Comment calculer m_{π} avec U et D^{-1} ?

C'est la deuxième partie de la LQCD : l'analyse Pour le pion :

- Opérateur : $\overline{O}_{\pi}(n) = \overline{d}(n)\gamma_5 u(n)$ $O_{\pi}(m) = \overline{u}(m)\gamma_5 d(m)$
- Le corrélateur du pion : $\langle O_{\pi}(n)\overline{O}_{\pi}(0)\rangle = -\operatorname{Tr}\left[\gamma_5 D_u^{-1}(n|0)\gamma_5 D_d^{-1}(0|n)\right]$

└→ Théorème de Wick & intégrales de chemins

- Fonction de corrélation : $C^{2pts}(t) = \frac{1}{l^3} \sum_{\vec{n}} \langle O_{\pi}(t, \vec{n}) \overline{O}_{\pi}(0) \rangle$
- Décomposition spectrale : $C^{2pts}(t) = \sum_k Z_k e^{-tE_k}$

Cette exemple montre comment on peut obtenir des grandeurs physiques intrinsèquement non perturbatives (ici m_{π})

Introduction

2 Désintégration $B_S \rightarrow D_S$

- *V*_{*CKM*}
- Les corrélateurs
- Facteurs de forme

3 Conclusion et perspectives

La matrice Cabibbo-Kobayashi-Maskawa (CKM)

$$\begin{pmatrix} d' \\ s' \\ b' \end{pmatrix} = \begin{pmatrix} V_{ud} & V_{us} & V_{ub} \\ V_{cd} & V_{cs} & V_{cb} \\ V_{td} & V_{ts} & V_{tb} \end{pmatrix} \begin{pmatrix} d \\ s \\ b \end{pmatrix}, \quad V_{CKM} = \begin{pmatrix} 0.97370(14) & 0.2245(8) & 0.00382(24) \\ 0.221(4) & 0.987(11) & 0.0410(14) \\ 0.0080(3) & 0.0388(11) & 1.013(30) \end{pmatrix}$$

Pierre Henri Cahue (LPSC)

Détermination expérimentale de $|V_{cb}|$

V_{cb} peut être calculé via 2 méthodes

 $|V_{cb}|_{incl}$

- Utilise désintégration Z₀ et Υ(4S)
- modèle ad hoc
- Valeur calculée $(42.2\pm0.8) imes10^{-3}$

Les deux valeurs sont en accord à $pprox 1.5\sigma$ Résultat final = moyenne des deux

$|V_{cb}|_{excl}$

- Utilise désintégration $B \to D$ et $B \to D^*$
- Non perturbatives
- Valeur calculée $(39.5 \pm 0.9) \times 10^{-3}$

La méthode $|V_{cb}|_{excl}$

Les taux de désintégration sont :

$$\frac{\mathrm{d}\Gamma(B \to D\ell\overline{\nu})}{\mathrm{d}w} = \frac{G_F^2 |\mathbf{V}_{cb}|^2}{48\pi^3} f(m_B, m_D, w) \mathcal{G}(w) \qquad \qquad w = \mathbf{v}_B \cdot \mathbf{v}_{D^{(*)}}$$
$$\frac{\mathrm{d}\Gamma(B \to D^*\ell\overline{\nu})}{\mathrm{d}w} = \frac{G_F^2 |\mathbf{V}_{cb}|^2}{48\pi^3} f_*(m_B, m_D, w) \mathcal{F}(w)$$

- calculer $|V_{cb}|_{excl} \Rightarrow$ connaître \mathcal{F} et \mathcal{G}
- \mathcal{F} et \mathcal{G} doivent être normalisés par $\mathcal{F}(1)$ et $\mathcal{G}(1)$
- Équivalent à $|V_{cb}|_{excl} = |V_{cb}|_{B \to D}^{expérimental} / \mathcal{G}(1) = |V_{cb}|_{B \to D^{(*)}}^{expérimental} / \mathcal{F}(1)$

Problème : Dans le formalisme utilisé en QCD standard $\mathcal{F}/\mathcal{G}(1) = 1+$ corrections non perturbatives

LQCD permet de calculer ces corrections non perturbatives

Le quark *b* sur réseaux

Problème : Le quark b est très couteux à mettre sur réseaux

- On le remplace par un **quark** *h*
- h et b mêmes propriétés sauf la masse
- On crée plusieurs (n = 6) quarks h avec différentes masses

$$\lambda = \left(rac{m_b}{m_c}
ight)^{rac{1}{n+1}} , \quad m_{h_i} = \lambda^i m_c$$

A la fin on fera une extrapolation $\{h_i\} \rightarrow b$

Point de départ

On a les propagateurs des quarks s, c et h avec et sans impulsion

Impulsion sur réseaux : θ relié à la vélocité relative $w = \sqrt{1 + \frac{3\theta^2 \pi^2}{m_D^2 L^2}}$

Les fonctions de corrélation construites :

- Fonctions à deux points
 - $\blacktriangleright \langle D_{\epsilon}^{(*)}(\theta) | \overline{D}_{\epsilon}^{(*)}(\theta) \rangle$ $\blacktriangleright \langle H_{\epsilon}^{(*)}(\theta) | \overline{H}_{\epsilon}^{(*)}(\theta) \rangle$
- Fonctions à trois points
 - $\langle D_s(\theta) | V_\mu | H_s \rangle$ $\langle D_s(\theta) | A_\mu | H_s^* \rangle$

Corrélateurs 3pts : Ajout d'un opérateur \rightarrow simule un courant faible

Premiers résultats

Extraction 2 pts \rightarrow Extraction 3 pts \rightarrow Smearing \rightarrow Facteurs de forme intermédiaire $\rightarrow \mathcal{G}(w)$

On a vu que
$$C^{2\rho ts}(t) = \sum_k |Z_k|^2 \exp^{-tE_k}$$
, $E_1 < E_2 < \cdots$ donc :

On pourra fitter Z_{D_s} , et autres fonctions à 2 points

Premiers résultats

Extraction 2 pts \rightarrow Extraction 3 pts \rightarrow Smearing \rightarrow Facteurs de forme intermédiaire $\rightarrow \mathcal{G}(w)$

Rapport 3pts et 2pts \rightarrow les incertitudes diminuent

On obtient une fonction constante = $\langle D_s | \Gamma | H_s \rangle$

Pierre Henri Cahue (LPSC)

Désintégration de mesons B_S en QCD sur réseaux

Smearing

Extraction 2 pts \rightarrow Extraction 3 pts \rightarrow Smearing \rightarrow Facteurs de forme intermédiaire \rightarrow $\mathcal{G}(w)$

Problèmes :

- Corrélateurs trop bruyants
- Fort taux de contamination

Résoudre ces problèmes :

- Procédure d'adoucissement du champ de jauge : le smearing
- On répète cette procédure un certain nombre de fois : niveau de smearing
- Les propagateurs sont construits avec des champs de jauge smearés
- Les corrélateurs sont construits avec deux propagateurs (smearés)

4 niveaux de smearing : {0, 30, 50, 80} 0 ⇔ pas de smearing On obtient des fonctions de corrélation matricielles Finalement résolution d'une équation aux valeurs propres généralisées (GEVP)

On obtiendra une projection sur l'état fondamental

 \Rightarrow réduction du bruit et des contaminations des états excités

Generalized Eigen Value Problem (GEVP) $C^{3pts}(t)$

Extraction 2 pts \rightarrow Extraction 3 pts \rightarrow Smearing \rightarrow Facteurs de forme intermédiaire $\rightarrow \mathcal{G}(w)$

Pour l'élément de matrice on a : $\langle O_A \Gamma O_B \rangle = \frac{Z_A Z_B C^{2\rho ts}}{C_A^{2\rho ts} C_B^{2\rho ts}}$

On obtient ainsi tout les éléments de matrice $(\langle O_A \Gamma O_B \rangle)$ Pareille pour 2 points \rightarrow masses, énergies, couplages au vide (Z) Algorithme de détection automatique de plateau \rightarrow Réduit incertitudes

Extraction des paramètres

Extraction 2 pts \rightarrow Extraction 3 pts \rightarrow Smearing \rightarrow Facteurs de forme intermédiaire $\rightarrow \mathcal{G}(w)$

m, *E*, *Z* et $\langle O_A | \Gamma | O_B \rangle$ sont calculées On se concentre sur G

$$\mathcal{M} = \langle D_{s}(k) | \overline{b} \gamma_{\mu} c | \mathcal{H}_{s}(p) \rangle$$

 $ec{p} = 0, \ \left| ec{k}
ight|^{2} = \left| ec{ heta}
ight|^{2} \pi / L, \ q = p - k$

Décomposition $\mathcal{M} = (p+k)_{\mu}f_{+}(q^{2}) + q_{\mu}\frac{m_{H_{5}}-m_{D_{5}}}{q^{2}}\left[f_{0}(q^{2}) - f_{+}(q^{2})\right]$

$$\begin{split} f_{0}(q^{2}) &= \frac{m_{H_{s}} - m_{D_{s}}}{m_{H_{s}} + m_{D_{s}}} \frac{q_{\mu}}{q_{max}^{2}} \mathcal{M} , \quad f_{+}(q^{2}) = \frac{m_{H_{s}} - E_{D_{s}}}{2\vec{q}^{2}m_{B_{s}}} \left(\frac{\vec{q}^{2}}{m_{H_{s}} - E_{D_{s}}}, \vec{q}\right) \mathcal{M} \\ h_{+}(q^{2}) &= \frac{m_{H_{s}} + m_{D_{s}}}{\sqrt{4m_{H_{s}}m_{D_{s}}}} \frac{q_{max}^{2}}{q^{2}} \left[f_{0}(q^{2}) + \left(1 - \frac{q^{2}}{q_{max}}\right) f_{+}(q^{2}) \right] \\ R_{0}(q^{2}) &= \frac{f_{0}(q^{2})}{f_{+}(q^{2})} , \quad H(w) = \frac{R_{0}(w)(m_{B_{s}} + m_{D_{s}})^{2} - 2m_{B_{s}}m_{D_{s}}(w+1)}{R_{0}(w)(m_{B_{s}} - m_{D_{s}})^{2} - 2m_{B_{s}}m_{D_{s}}(w-1)} \\ \mathcal{G}^{\mathsf{lat}}(w) &= \mathbf{h}_{+}(w) \left[1 - \left(\frac{\mathbf{m}_{\mathsf{B}_{s}} - \mathbf{m}_{\mathsf{D}_{s}}}{\mathbf{m}_{\mathsf{B}_{s}} + \mathbf{m}_{\mathsf{D}_{s}}}\right)^{2} \mathbf{H}(w) \right] \end{split}$$

Extrapolation à recul nul

Extraction 2 pts \rightarrow Extraction 3 pts \rightarrow Smearing \rightarrow Facteurs de forme intermédiaire $\rightarrow \mathcal{G}(w)$

Actuellement j'en suis à cette étape La majeure partie du travail a été faite en 9 mois

Problèmes :

Solutions :

• $\mathcal{G}(1)^{\text{lat}}$ n'est pas calculable \Rightarrow Fit $\mathcal{G}^{\text{lat}}(w)$ • $\mathcal{G}^{\text{lat}}(1, \lambda^k m_c, m_c, a)$ pour un quark $h \Rightarrow \Sigma_k(1, a^2) = \frac{\mathcal{G}^{\text{lat}}(1, \lambda^{k+1} m_c, m_c, a^2)}{\mathcal{G}^{\text{lat}}(1, \lambda^k m_c, m_c, a^2)}$ $\sigma_k = \lim_{a \to 0} \Sigma_k$ $\mathcal{G}^{\text{phy}}(1) = \left(\prod_{k=0}^n \sigma_k(1)\right) \times \underbrace{\mathcal{G}^{\text{lat}}(1, m_c, m_c)}_{=1}$

État de l'art

 $\mathcal{G}(1)$ déjà calculé sur réseaux

• Soit à la masse du b

Utilise une action controverser (staggered)

- Soit avec des quarks h arXiv :1310.5238v3
 - 2 saveurs de quarks

Comparaison avec l'autre équipe (arXiv :1310.5238v3) Différences :

- Pas la même action
- Pas les mêmes réseaux

Nouveaux :

- $\frac{\mathrm{d}\Gamma(B \to D^* \ell \overline{\nu})}{\mathrm{d}w} = \frac{G_F^2 |\mathbf{V}_{cb}|^2}{48\pi^3} f_*(m_B, m_D, w) \mathcal{F}(w)$
- Ensemble de réseaux suffisamment grand pour passer les critères FLAG actuels
- Possibilité d'ajouter une troisième saveur de quark (mer)

Introduction

2 Désintégration $B_S o D_S$

Conclusion et perspectives

Conclusion

Travail effectué :

- Réalisation d'un code d'analyse pour les désintégrations $B_s o D_s$ et $B_s o D_s^*$
- $\mathcal{G}(w)$ pour un réseau

A faire :

- $\bullet~{\sf Extrapolation}~w \to 1$
- Utiliser mon programme sur les autres réseaux
- Étendre le calcul pour $\mathcal{F}(w)$

Enjeux :

- \bullet Publication des résultats \rightarrow améliorations $\mathcal{G}(1)$ et $\mathcal{F}(1)$
- Réduction des biais $\left|V_{cb}\right|_{excl}$
- Améliorer l'accord ou l'incompatibilité entre $\left|V_{cb}\right|_{excl}$ et $\left|V_{cb}\right|_{incl}$
- \nearrow Précision $V_{cb} \rightarrow$ recherche nouvelle physique

Perspectives :

En physique du B

- \nearrow Nombre de saveurs
- Réseaux plus grands
- V_{ub} et autres éléments de matrice
- Recherche sur les quarkonia

Mes deux autres projets :

- Implémentation du schéma de renormalisation RI-SMOM Déjà commencée (début de thèse) Détermination plus précise des constantes de renormalisation
- Projet de calcul du moment dipolaire électrique du neutron

Merci pour votre attention !