

High-resolution SZ observations for cluster cosmology with NIKA2

Florian Kéruzoré Séminaire doctorant, 01/07/2020

Thèse dirigée par F. Mayet, au sein de l'équipe "Cosmologie Multi- λ "

Cosmology with galaxy clusters

High-resolution SZ with NIKA2

NIKA2/XMM-Newton analysis of a faint cluster

Perspectives, conclusion

OUTLINE

• Galaxy clusters = largest gravitationally bound structures in the Universe

- Formed in the late universe (z < 3) through gravitational collapse of matter + accretion of surrounding material
 - → Probes of matter distribution in the Universe
- Distribution of clusters in the Universe depends on the mass function
 - Expected # of clusters at a given mass and redshift
 - Depends on cosmological parameters
- → We can count clusters in bins of mass and redshift to measure cosmological parameters
- \rightarrow Need a large number of clusters

→ For cosmology, we need a **survey** of galaxy clusters and an estimation of their **redshifts** and **masses**

Masses are not directly observable in surveys

- We only have access to measured quantities *Example: # of galaxies, X-ray brightness, SZ, ...*
- We need to link measured quantities to cluster masses
 - → Scaling relations between observable and mass calibrated on samples with known masses

→ Need to have a well-calibrated relation for precision cosmology

→ Cluster mass through thermodynamical properties of the intracluster medium (ICM)

Thermodynamical properties of the ICM can be measured in X-rays:

- X-ray emission
 - Due to thermal bremsstrahlung in the ICM
 - Signal linked to the ICM electron density integrated along the line of sight:

$$S_X \propto (1+z)^{-4} \int_{\text{LoS}} \Lambda(T_e) n_e^2 \, \mathrm{d}\ell$$

→ Used to measure the **density** in the ICM

- X-ray spectroscopy can be performed with enough photons:
 - Gives access to the electron temperature of the ICM
 - Combination with density gives the pressure through $P_e = n_e kT_e$
 - → Hydrostatic mass

Limitation Redshift dependence → time-consuming at high z (especially spectroscopy)

- Spectral distorsion of the cosmic microwave background (Sunyaev & Zeldovich, 1972)
- Inverse Compton scattering on hot ICM electrons \rightarrow CMB photons gain energy
- Observed amplitude linked to the ICM electron **pressure** integrated along the line of sight (LoS):

Compton parameter
$$y \propto \int_{\text{LoS}} P_e \, \mathrm{d}\ell$$

Redshift independent

6

 Pressure P → measured in SZ Density n → measured in X-rays → HSE mass M^{HSE} = f(P, n) → Go deeper in redshift than X alone 	X—SZ synergy
• Density $n \rightarrow$ measured in X-rays • HSE mass $M^{\text{HSE}} = f(P, n)$ • Go deeper in redshift than X alone	• Pressure $P \rightarrow$ measured in SZ
→ HSE mass $M^{\text{HSE}} = f(P, n)$ → Go deeper in redshift than X alone	• Density $n \rightarrow$ measured in X-rays
\rightarrow Go deeper in redshift than X alone	\rightarrow HSE mass $M^{\text{HSE}} = f(P, n)$
(no need for spectro)	

Planck view of A2319 (Planck collaboration VIII, 2011)

THE PLANCK SZ-MASS SCALING RELATION

Florian Kéruzoré Séminaire doctorant 01/07/2020

Definition: Integrated quantities

• Characteristic radius to describe clusters: R_{500} (radius with average density = 500 ρ_{crit})

 \rightarrow SZ signal within $R_{500} \rightarrow Y_{500} \propto \int_0^{R_{500}} P(r) d^3r$, Mass within $R_{500} \rightarrow M_{500}$

SZ-Mass scaling relation: $Y_{500} = f(M_{500})$

- So far measured:
 - With X-ray only masses
 - At low redshift (z < 0.5)
- Planck SZ survey detected clusters up to z = 1
- The relation could evolve with redshift (different cluster properties at high z)

Possible evolution with redshift could impact cosmological results

 \rightarrow Could be detected with X-SZ

Cosmological analyses require:

Large catalogs of galaxy clusters for cosmological analyses Ο

\rightarrow SZ surveys

- Planck, SPT, ACT
- Small representative samples of clusters with well known properties Ο to calibrate the tools needed for cosmology
- \rightarrow X—SZ synergy

→ NIKA2 SZ Large Program

Cosmology with galaxy clusters

High-resolution SZ with NIKA2

NIKA2/XMM-Newton analysis of a faint cluster

Perspectives, conclusion

OUTLINE

The NIKA2 collaboration

- International collaboration
- \circ ~150 members

10

- Grenoble leadership: Institut Néel (leaders), IPAG, IRAM, LPSC
- $\circ~$ Built the NIKA2 camera

The NIKA2 SZ Large Program

- Pls: F. Mayet, L. Perotto (LPSC)
- 25 members across 13 institutes
- Specialists in SZ/X-rays/visible, astrophysics/cosmology, numerical simulations, ...
- \rightarrow 300 h NIKA2 guaranteed time

Nicolas PONTHIEU François-Xavier DESERT Laurence PEROTTO Juan MACIAS-PEREZ Florian KERUZORE Frédéric MAYET Rémi ADAM **Florian RUPPIN** Charles ROMERO **Etienne POINTECOUTEAU** Nicolas CLERC Nabila AGHANIM Marian DOUSPIS Jean-Baptiste MELIN Monique ARNAUD Gabriel PRATT lacopo BARTALUCCI Hervé AUSSEL Alexandre BEELEN Marco DE PETRIS **Gustavo YEPES Rafael BARRENA DELGADO** Antonio FERRAGAMO Jose Alberto RUBINO MARTIN Chiara FERRARI

- SZ follow-up of ~50 clusters
- Combination of high-resolution SZ & X-rays
- Measurement of the tools needed for cosmology:
 - the SZ Mass scaling relation
 - the ICM mean pressure profile
- Improvement over previous measurements:
 - at high redshift (0.5 < z < 0.9)more accurate for more distant objects
 - high angular resolution SZ observations identification of substructures, contamination...

→ Detailed information on distant clusters

NIKA2: AN IDEAL INSTRUMENT FOR SZ

- Kinetic Inductance Detectors (KIDs) camera
- o 30 meter telescope, Sierra Nevada, Spain
- Well-suited to SZ observations:
 - Dual band

- \rightarrow Allows to exploit the spectral dependence of SZ
- High angular resolution
 - \rightarrow Provides detailed information about the structure of the ICM
- Large field of view
 - \rightarrow Allows to map extended regions
- High sensitivity
 - → Efficient at mapping faint signal

		1.2 mm	2 mm
Ø	FWHM [arcsec]	11.1 ± 0.2	17.6 ± 0.1
	Field of view [arcmin]	6	5.5
	Sensitivity $[mJy \cdot s^{1/2}]$	30 ± 3	9 ± 1
o [ar	Mapping speed $\operatorname{cmin}^2 \cdot \mathrm{mJy}^{-2} \cdot \mathrm{h}^{-1^{1/2}}$]	111 ± 11	1388 ± 174

THE NIKA2 PIPELINE: FROM RAW DATA TO MAPS

Florian Kéruzoré Séminaire doctorant 01/07/2020

The telescope scans the sky following a "zigzag" pattern

(13)

→ Each detector sees the evolution of incident luminosity with time: Time-Ordered Information (TOI)

Atmosphere emission is highly dominant and needs to be removed

- At any given time, detectors see the same atmosphere, but different astro signal
- \circ Noise = common mode of the TOIs
- Subtracted from the data \rightarrow signal-dominated TOIs
- Clean data projected on a map

Florian Kéruzoré Séminaire doctorant 01/07/2020

NOISE AND TRANSFER FUNCTION

Products of the data reduction:

- NIKA2 Maps
- Noise power spectrum
 - Evaluated on null maps
 - Quantifies the noise remaining in our maps
 - \rightarrow Can be used to measure the noise covariance
- Transfer function
 - Evaluated by processing simulations the same way we processed data
 - TF = $P_k^{\text{in}}/P_k^{\text{out}}$
 - Quantifies the filtering of signal due to our data processing
 - \rightarrow Needs to be taken into account when fitting models

2mm null map power spectrum

2mm transfer function

Cosmology with galaxy clusters

High-resolution SZ with NIKA2

NIKA2/XMM-Newton analysis of a faint cluster

Perspectives, conclusion

CHOICE OF TARGET

(16)

- First cluster seen by NIKA2: Science verification
 - Target: PSZ2-G144.83+25.11 *Ruppin et al. (2018)*
 - Planck-detected cluster
 - High mass, low redshift
 - \circ High observation time → high SNR
- Next target: tackle different possible challenges
 - Not detected by Planck
 - Low mass, high redshift
 - \circ Standard observation time → normal SNR

→ Next target: ACT-CL J0215.4+0030 (aka ACTJ0215)

Kéruzoré et al. (2020, submitted)

NIKA2 MAPS OF ACTJ0215

Surface brightness [mJy/beam]

At 150 GHz (2 mm):

(17)

- SZ decrement detected at ~ 9σ Low: first NIKA2 cluster was ~ 14σ
- Faint (<1 mJy peak), small (NIKA2 beam in bottom left corner)
- Large residual noise bands
- Hints of point source contamination: Sources with positive fluxes compensate the SZ decrement

At 260 GHz (1.2 mm):

- No SZ detected (none expected given the noise level)
- Confirmation of point source contamination

XMM-*Newton* observations of the cluster:

Deep: $t_{obs} = 37 \text{ ks} \rightarrow \text{deep}$ enough to measure the **temperature** of the ICM through X-ray spectroscopy

→ Very rare at this mass and redshift: X-rays usually only give access to the density

XMM-Newton map

Are the point sources already known?

- **5 sub-millimeter galaxies (SMGs)** in our field according to *Herschel*
- SMG1, SMG2, SMG4 easily cross-matched with NIKA2 1 mm detections
- SMG3 has SNR<3 in NIKA2 at 1 mm
- Unclear situation for S5&6 (two sources?)
 - Far enough from the cluster that they are not an inconvenience
 - We remove them from the NIKA2 2mm map
- Other sources:

- Fit a modified blackbody spectrum with Herschel data + NIKA2 1mm
- Extrapolate at 2mm
- \rightarrow Probability density for the 2mm flux

NIKA2 150 GHz map = ICM SZ signal + point source contamination (+ noise)

 \rightarrow Extension of the NIKA2 SZ pipeline to perform joint fits of SZ + point sources

1) ICM SZ signal

- Spherical symmetry \rightarrow ICM pressure profile gNFW model: $P_e(r) = P_0 \left(\frac{r}{r_p}\right)^{-c} \left[1 + \left(\frac{r}{r_p}\right)^a\right]^{(c-b)/a}$
 - → 5 parameters: P_0 , global amplitude,

 r_p , a, transition radius/steepness b, c, external/internal slopes

NIKA2 150 GHz map = ICM SZ signal + point source contamination (+ noise)

 \rightarrow Extension of the NIKA2 SZ pipeline to perform joint fits of SZ + point sources

1) ICM SZ signal

20

- Spherical symmetry \rightarrow ICM pressure profile gNFW model: $P_e(r) = P_0 \left(\frac{r}{r_p}\right)^{-c} \left[1 + \left(\frac{r}{r_p}\right)^a\right]^{(c-b)/a}$
 - → 5 parameters: P_0 , global amplitude,

 r_p , a, transition radius/steepness b, c, external/internal slopes

- Integrated along the line of sight & calibrated
 Convolved by the NIKA2 instrumental response
 - \rightarrow SZ model map

NIKA2 150 GHz map = ICM SZ signal + point source contamination (+ noise)

 \rightarrow Extension of the NIKA2 SZ pipeline to perform joint fits of SZ + point sources

1) ICM SZ signal

20

- Spherical symmetry \rightarrow ICM pressure profile gNFW model: $P_e(r) = P_0 \left(\frac{r}{r_p}\right)^{-c} \left[1 + \left(\frac{r}{r_p}\right)^a\right]^{(c-b)/a}$
 - → 5 parameters: P_0 , global amplitude, r_p , a, transition radius/steepness b, c, external/internal slopes
- Integrated along the line of sight & calibrated
 Convolved by the NIKA2 instrumental response
 - \rightarrow SZ model map
- 2) Point source contamination
- Model: NIKA2 PSF with variable amplitude
- Positions known from the NIKA2 260 GHz map
- Fluxes as free parameters with priors from SED extrapolation (NIKA2 + *Herschel*)

Parameters $\theta \rightarrow \text{model map } M(\theta)$

Fit the joint model (SZ + point sources) on the NIKA2 250 GHz map using MCMC

Residuals compatible with noise

→ The NIKA2 data are well-described by a gNFW pressure profile + point sources

FIT RESULTS: PRESSURE PROFILE OF ACTJ0215

22

→ Pressure profile compatible with XMM-only data

NIKA2+XMM THERMODYNAMICS

NIKA2 pressure

	ACT	XMM-Newton	NIKA2+XMM
<i>R</i> ₅₀₀ [kpc]	877.8 ± 46.2	780.9 ± 19.8	810.1 ± 41.9
$\frac{\mathcal{D}_{A}^{2} Y_{500}}{[10^{-5} \text{ Mpc}^{2}]}$	4.07 ± 1.13	_	3.76 ± 0.39
$M_{500} \ [10^{14} \ \mathrm{M_{\odot}}]$	3.5 ± 0.8	2.48 ± 0.70	3.79 ± 0.58
	$Y_{500} - M_{500}$ scal. rel.	mass	mass

- Our measurements agree with previous results
- \circ Improved precision on Y_{500} thanks to high angular resolution
- \circ Improved precision on M_{500}
 - → Important: masses computed from scaling relations usually have smaller error bars than hydrostatic mass measurements (and may be biased)

- Study designed as a "worst case scenario" for the NIKA2 LPSZ:
 - A **faint** cluster (low mass, high z)
 - Detected with **modest SNR**
 - Strongly contaminated by point sources
- Nonetheless, we are able to precisely measure thermodynamical properties of the ICM by combining SZ and X-rays

Very promising for the future of the NIKA2 LPSZ and its impact on cluster cosmology

Cosmology with galaxy clusters High-resolution SZ with NIKA2

NIKA2/XMM-Newton analysis of a faint cluster

Perspectives, conclusion

OUTLINE

LPSZ PARTIAL SAMPLE RESULTS

27

First redshift bin of the LPSZ almost entirely observed

- \rightarrow Possibility to run a "full analysis" of the half sample:
 - Mean pressure profile
 - Scaling relation

To run this analysis, we need:

- 1. A standard method to remove noise in maps
- 2. An efficient pipeline to extract pressure profiles
- 3. Tools to fit a scaling relation

3RD YEAR PHD PLAN

1.

- Improvement of the noise removal process
- → Tradeoff between removing noise and keeping signal that works for all clusters
- 2. Acceleration of the pressure profile extraction
 - → Factor 15~20 achieved, needs to be more thoroughly tested
- 3. Prepare scaling relations computations
 - → Not a trivial fit (selection effects, ...)
 → Development in progress
 - → Test on hydrodynamical simulations of galaxy clusters

PANCOPANCO2Model computation time [ms] 503 ± 60 27 ± 3

- Context of my PhD: NIKA2 SZ Large Program
- First results on an individual target promising:
 - High-precision thermodynamical properties for a faint, small, contaminated target
 - Promising for the rest of the LPSZ, and for its impact on cosmology
- Ongoing developments towards the first LPSZ cosmological results (half sample)