

Search for a new particle X in the $X \rightarrow HH \rightarrow yybb$ decay channel with the ATLAS detector

HULSKEN Raphaël

PhD Seminar

Supervisors : STARK Jan & PETIT Elisabeth

Outline

- Theoretical motivation for the new particle
- Description of the analysis
- Previous result
- New proposal for the analysis
- Ongoing result

Measurement of the Higgs potential

Trilinear coupling :

• Higgs potential : will define the shape of the Mexican hat

$$V(H) = \mu^2 \phi^+ \phi^- + \lambda (\phi^+ \phi^-)^2$$

 $g \longrightarrow h$ $g \longrightarrow h$ $g \longrightarrow h$

with $\lambda_3 = M_H^2/2v$ and $M_H^2 = 2 \lambda^* v^2$ where v is the vacuum expected value (246 GeV)

• All this leads to $\lambda_3 = \lambda^* v$ Measuring the trilinear coupling will lead to constrain the Higgs potential

Current knowledge of the trilinear coupling

- The production of Higgs pair with the trilinear coupling is 1000 times lower than the cross section of one Higgs.
- The experimental limit is, for now, 10 times the theoretical value → we need more data, the theoretical value will be reached with the help of the HL-LHC (High-luminosity LHC) and will be one of its main goal

• For now we can only put constraint on the value of λ_3 , (-5.0 < λ_3/λ_3^{SM} < 12.0) 95% CL with λ_3^{SM} being the value predicted by the Standard Model

Motivation of the X->HH

 Huge program of search for a new spin 0 particle in ATLAS, covering many decay channels

Many theories predict the existence of a heavy particle decaying into a pair of Higgs boson.
Models with two higgs doublets (MSSM, twin Higgs models and composite Higgs models) could explain such a particle.

Creation and detection

- Proton-proton collision at the LHC
- Last publication was made with a luminosity (N= σ*L) of 36fb⁻¹. We will use all the 140fb⁻¹ available now for the new paper.
- We will use the data collected by the ATLAS detector

https://twiki.cern.ch/twiki/bin/view/AtlasPublic/LuminosityPublicResultsRun2

Decay channel X->HH->yybb

Decay of one Higgs boson into a b-quark pair : best branching ratio

https://twiki.cern.ch/twiki/bin/view/LHCPhysics/CERNYellowReportPageBR2010

Search for a new particle X in the $X \rightarrow HH \rightarrow bbyy$ decay channel with the ATLAS detector, HULSKEN Raphaël

03/07/20

Decay channel X->HH->yybb

Decay of one Higgs boson into a b-quark pair : best branching ratio

Decay channel X->HH->yybb

Decay of the other Higgs boson into a photon pair : best resolution and reconstruction efficiency

How to identify photons in ATLAS ?

 Photon create shower when entering the calorimeter.
 Use of shower-shapes (variables that are computed with the energy inside the Electromagnetic calorimeter cells).

• A selection is made for each variable, it will allow us to discriminate the photon from background photon coming from jet (mainly $\pi^0 \rightarrow \gamma\gamma$)

11

Effect of the pile-up on the photon

- Decrease of the efficiency with the pile-up (average number of particle interactions per bunch-crossing) even worse for the HL-LHC
- Relaxing the selection of the selection of the shower-shapes have been tried but it shows limit as the projection gives only a ~50% identification efficiency at the HL-LHC

- $rac{1}{\eta}$
 - Average pileup on the event

- I tried a more low-level correction, a Cell by cell subtraction of the average pile-up per event.
- This correction is used to correct jets from the effects of the pile-up but I showed that the effect is too subtle to be efficient for the photons
- Work will be continued by another student (search for new shower shapes)

Selecting the signal

The identification of the b-jets and the photons remove the reducible background, we are left with the irreducible one.

Selections for reductible background :

- asking for two identified photons
- asking fot two identified b-jets

Selection for irreductible background :

- kinematic selection on the photons
- kinematic selection on the diphoton invariant mass
- kinematic selection on the jets
- kinematic selection on the dijets invariant mass
- The signal is hidden behind this background, we need to apply more selection cuts in order to increase the ratio signal/background.

For the Signal at 300 GeV	Number Single Higgs	Number continuum diphoton	Number signal	Ratio S/B
Before the selection	7205.07	229734	5.38	2.27e-05
After the selection	0.98	31.88	3.51	0.11

How to do a search à la H->yy ?

- We search for in bump in the data compared to the background only hypothesis
- For that we search for the best background+signal hypothesis that fit the diphoton invariant mass the Data

Example of the Higgs Boson discovery by ATLAS Dash line :

Fit of the data with the background only hypothesis Full line :

Fit of the data with the background+signal hypothesis

https://arxiv.org/pdf/1207.7214.pdf

Fit of the background and signal

• Once the selections are applied we fit the di-Higgs invariant mass for background and the signal

https://arxiv.org/pdf/1807.04873.pdf

Search for a new particle X in the $X \rightarrow HH \rightarrow bbyy$ decay channel with the ATLAS detector, HULSKEN Raphaël

Previous result

 Result of the 2016 analysis : No huge differences between the data and the background only hypothesis (No bump). Our fits are limited by the low number of events in the tail.

• We then reinterpret our result as limit on the cross section

Limit on the cross section

• Limit at 95% confidence level of the cross section of the $X \rightarrow HH$ decay.

Everything that is over this line is excluded at 95%

Search for a new particle X in the $X \rightarrow HH \rightarrow bbyy$ decay channel with the ATLAS detector, HULSKEN Raphaël

Limitation of this technique

- Presence of a kinematic "turn-on" makes it hard to fit specifically at low mass
- But it's at low mass that the yybb is the most important

New methodology : first proposal

- More data helps to develop a more advance technique
- First change : from a fit on M_{HH} with a cut on M_{yy} to a fit on M_{yy} with a cut on M_{HH}

diphoton continuum

Technique used by CMS

Search for a new particle X in the $X \rightarrow HH \rightarrow bbyy$ decay channel with the ATLAS detector, HULSKEN Raphaël

Second proposal : using a 2D fit

• Second change : from a 1D fit on M_{yy} to a 2D fit on $M_{yy}^*M_{bb}$

- Improvement could be made using the fact that the shape of the SingleHiggs background peak differ as function of the decay channel
- The 2D method could also be used for the SM measurement

My ongoing result (1)

- Starting from the chosen selection I developed my own tools to fit the signal and background, and use the official statistical tools in order to compute the limits
- Those limits I compute are used as the figure of merit of the two improvements I proposed, and for other changes proposed by the team

YY : using the 1D fit on M_{yy} HH : using the 1D fit on M_{HH} (method of the previous paper)

For limit result : the lower the better Result with statistical error only

• Fitting M_{yy} give equivalent to fitting M_{HH} without having to fit the kinematic turnon.

My ongoing result (2)

 It is the first time such 2D fit is done in the group, I had to adapt the official tools in order to get the result for the 2D fits

YY : using the 1D fit on M_{yy} 2D : using the 2D fit on $M_{yy}^*M_{bb}$

For limit result : the lower the better Result with statistical error only

- There is an improvement using the 2D fit comparing to the YY fit.
- We are dominated by the statistical error but there is work in progress to estimate the systematics

Conclusion

- Familiarization with the tools used by ATLAS and EM calorimeter thanks to the work on photons
- Already some improvement have been shown using new methodology in the X \rightarrow HH \rightarrow bbyy
- There are still some work to be done to compute the uncertainties and in order to fix the choice of the fit function

Outlook

- The result that we aim to publish in the end of 2020 will be the reference until the end of the run-3 in 2024
- I work, in parallel, on the photon calibration aiming to improve the sensitivity of the precision measurement of the Higgs mass (It would be complementary to my search work)

CLs Method

- H0: backround only hypothesis
- H1: background+signal hypothesis
- S : value measured
- α : accepting H1 whereas H0 is true (highlightling at 3 σ and 5 σ)
- β : accepting H0 whereas H1 is true (treshold : β <0.05 this value will fix the value for our limit)

Redefinition if the diHiggs invariant mass

• We want to use correction on the diHiggs invariant mass to reduce the spread of the signal

Old = bb.M + yy.M

Cnstrnd = $bb_{cnstrnd}$.M + yy.M (the one used for now) with $bb_{cnstrnd}$ = bb/bb.M *125

Tilde = yybb.M - yy.M - bb.M + 250

old, default
 new, default
 old, cnstrnd
 new, cnstrnd
 old, tilde
 new, tilde

Backup : b-tagging and photon identification

- There are some parameter used to characterize each type of particle then we use an MVA to discriminate the type of the particle.
- We can choose the MVA cut depending on how clean we want our signal to be. (tighter discriminant → cleaner signal)

Backup non-resonant result

Search for a new particle X in the $X \rightarrow HH \rightarrow bbyy$ decay channel with the ATLAS detector, HULSKEN Raphaël

	ATLAS	CMS	
bbbb	ovtrapolation	parametric	Largest BR 😊
	extrapolation		Large multijet and tt bkg 🙁
bbττ	extrapolation	parametric	Sizeable BR 😊
			Relatively small bkg 😊
			Small BR 😕
bbyy	smearing	parametric	Good diphoton resolution 😊
			Relatively small bkg 😊
bbVV		paramotria	Large BR 😊
(→ אוע)		parametric	Large bkg 😕
bbZZ		paramotria	Very small BR 😕
(→4I)		parametric	Very small bkg 🙂

Backup on the photon identification

- $E_{new} = E_{old} \rho_{median} \times cosh(\gamma_n) \times coefficient$
- Using two types of MC files (one with backup and one without) to look at the cell energy differences as a function of the pile-up in order to find the coefficient

Effect of correction on Rphi and Reta

I showed that such correction is too strong and gives some weird results such as negative energies.

I found two effects that can explain such change:

- The energy correction will lower more the denominator than the numerator as it contains more cells.

- Some cells on the edge had negative energy after the correction

Shower shapes

Particle path inside the detector

Possible new physics

Model	Híggs Spectrum	Possíble Híggs paír final states from resonant productíon
RXSM SM+real singlet	`dark phase': H_SM, DM `broken phase': H_SM, S	DM DM H_SM H_SM, SS
CXSM SM+complex sínglet	`dark phase´: H_SM,S,DM `broken phase´: H_SM,HI, H2	H_SM H_SM, SS, DM DM H_SM H_SM, H1 H1, H2H2, H1 H2, H_SM H1
2HDM 2 Híggs doublets	CP-conserving: H_SM,H,A	H_SM H_SM, HH
MSSM 2 Híggs doublets, SUSY!	CP-conserving: H_SM,H,A	H_SM H_SM no HH (due to constraints)
C2HDM 3 Híggses míx	CP-violating: H_SM,H1, H2	H_SM H_SM, H1 H1, H2 H2 H1 H2, H_SM H1
N2HDM 2 doublets, 1 real singlet	H_SM,H1,H2,A	H_SM H_SM, H1 H1, H2 H2 H_SM H1, H1 H2
NMSSM SUSY! 2 doublets + 1complex singlet	H_SM,H1,H2,A1,A2	H_SM H_SM, H1 H1, H_SM H1, H_SM A1 A1 H1 (no H1 H2, A1 H2 due to conststraints)