PREPARATION FOR THE ANALYSIS AND INTERPRETATION OF EUCLID CLUSTER COSMOLOGY

PHD STUDENT: ALEJANDRO JIMENEZ MUNOZ SUPERVISOR: JUAN FRANCISCO MACIAS PEREZ

OUTLINE

- Cosmology is the scientific study of the origin and evolution of the Universe.
- The Universe is mostly composed by Dark Matter and Dark energy and only 5% of the Universe belongs to the matter we know
- Dark matter is responsible for the structure formation in the Universe.
 - Example: Rotation curves of galaxies, CMB cosmological parameters estimation, mass measurement from clusters...
- Dark energy is the responsible of the accelerated expansion of the Universe
 - Supernovae Ia, CMB cosmological parameter estimation...
- To try to understand the Universe, spacecraft missions would be very useful, for example the Euclid mission

COSMOLOGY

BM 5% DM 27% DE 68%

- Medium Class ESA mission expected to be launched in 2022
- Designed to study the nature of Dark Matter and Dark Energy
 - Cosmological Probes
 - Weak Lensing (WL) Measure cosmic shear
 - Baryonic Acoustic Oscillations (BAO) Galaxy clustering
 - Cluster of Galaxies Cluster abundance
- The Euclid system shall perform a wide survey of at least 15,000 deg² and a deep survey of 40 deg²
 - Around 2 billion galaxies

4

EUCLID

EUCLID Galactic Map coverage

- Visible and IR emission:
 - Light from stars in galaxies -> Galaxy Clusters
 - We need photometry and spectroscopy for galaxy properties and redshift (z) measurements
- Composed by two instruments with a common field of view ~ 0.54 deg2:
 - VIS: Visual imager (550-920nm) and a magnitude limit of M_{AB} = 24.5
 - Performing Weak Lensing with high quality
 - NISP: Near Infrared SpectroPhotometer.
 - Photometric IR images. Filters Y,J,H
 (920-2000nm) and a magnitude limit of
 m_{AB} = 24.5
 - Slitless Spectroscopy (1100-2000nm), and a magnitude limit of $m_{AB} = 19.5$.
- Redshift precision: dz/z < 0.001; 0 < z < 25

EUCLID

Photometry

Spectroscopy

3.53.63.64.54.54.54.54.54.54.54.54.54.54.54.55.005

• Measure flux (f) and then the magnitude: $m = -2.5 \log f + a$

Measure redshift

Ηα

- NISP 16 H2RG detectors Matrix of 2048x2048 pixels
- **EUCLID on-board data processing assumes a white** noise approximation for the readout noise

NISP detector real data

GOAL - Characterize the readout noise

H2RG

6

Signal

NISP READOUT MODE

- •1 ramp = 1 pixel
- •Non-destructive frames
- Signal = Photon flux (Dark) + Poisson Associated noise + Readout noise
- Dark Flux is accumulated in the frames -> slope
- •We remove the dark flux for keeping only the readout noise

NISP READOUT NOISE CHARACTERIZATION

After Dark Correction we proceed to characterize the readout noise

Readout noise model

•
$$\mathbf{P}(\mathbf{f}) = \frac{\sigma^2}{2} \left(1 + \left(\frac{\mathbf{f}}{\mathbf{f}_{\text{knee}}}\right)^{\alpha} \right)$$
 - Power Spectrum

- Fitting procedure and obtaining σ , $\mathbf{f}_{\mathbf{knee}}$, α
- α -> slope due to the excess of noise at low frequencies
- $\mathbf{f}_{\mathbf{knee}}$ -> where the slope begins
- σ > The amplitude of the flat part of the spectrum

7

Frequency [*Hz*]

Average best fit values

- We perform the fit for the 2048x2048 pixels
- $\sigma = 19.70^{+1.11}_{-0.78} \text{ e}^{-}/\sqrt{\text{Hz}}$
- $f_{\text{knee}} = 0.0052^{+0.0018}_{-0.0013} \text{ Hz}$

$$\alpha = 1.24^{+0.26}_{-0.21}$$

Group Definition in MACC mode

Group differences: $\Delta G_k = G_{k+1} - G_k$

Group differences Covariance Matrix: $\mathbf{D} = \mathbf{E}[(\Delta \mathbf{G}_{\mathbf{k}} - \mathbf{E}[\Delta \mathbf{G}_{\mathbf{k}}])(\Delta \mathbf{G}_{\mathbf{L}} - \mathbf{E}[\Delta \mathbf{G}_{\mathbf{L}}])]$

MAXIMUM LIKELIHOOD FLUX ESTIMATOR

Maximum Likelihood Flux Estimator

$$L = \frac{1}{\sqrt{2\pi |\mathbf{D}|}} \exp \left[-\frac{1}{2} (\Delta \mathbf{G} - \mathbf{g}) \mathbf{D}^{-1} (\Delta \mathbf{G} - \mathbf{g})^{\mathrm{T}} \right]$$

- g is the expected flux
- Covariance Matrix depends on the Readout Noise
- We perform Monte Carlo simulations of the $(1/f)^{\alpha}$ like noise to obtain the covariance matrix

EXPECTED ON BOARD FLUX BIAS AND CONCLUSION

- ▶ To measure the flux on board EUCLID assumes a white noise approximation for the readout noise
- We evaluate the bias induced for this approximation

Conclusion

- The NISP detectors data show correlated readout noise
- We find that the flux bias can be up to four times larger than when accounting for the correlation in the readout noise
- This bias is <u>negligible</u> with respect the expected uncertainties for typical sky background signals
- we expect no significant in the on-board fluxed measured by **EUCLID**
- Paper submitted to internal referees

Implication of correlated readout noise for flux measurements with the EUCLID NISP instrument

A. Jiménez Muñoz¹, J.F. Macías-Pérez¹, J.C. Clémens², W. Gillard², B. Kubik³, A. Secroun², and G. Smadja³

¹ Univ. Grenoble Alpes, CNRS, Grenoble INP, LPSC-IN2P3, 53, av- enue des Martyrs, 38000 Grenoble, France

² Aix-Marseille Univ, CNRS/IN2P3, CPPM, Marseille, France

³ Universite de Lyon, F-69622, Lyon, France ; Universite de Lyon 1, Villeurbanne; CNRS/IN2P3, Institut de physique des 2 infinis de Lyon, France

Received July 1, 2020 / Accepted -

Abstract

The EUCLID satellite, to be launched by ESA in 2022, will be a major instrument for cosmology for the next decades. EUCLID is composed of two instruments: the Visible (VIS) instrument and the Near Infrared Spectrometer and Photometer (NISP). In this work we describe the implications of correlated readout noise in the NISP detectors for the final in-flight flux measurements. Considering the Multiple Accumulated (MACC) readout mode, for which the UTR (Up the Ramp) exposures frames are averaged in groups, we derive an analytical expression for the noise covariance matrix between groups in the case of correlated noise. We also characterize the correlated readout noise properties in the flight NISP detectors using long dark integrations. For this purpose, we assume a $(1/f)^{\alpha}$ -like noise model and fit the model parameters to the data, obtaining typical values of $\sigma = 19.70^{+1.11}_{-0.78} \text{ e}^{-}/\sqrt{Hz}$, $f_{knee} = 0.0052^{+0.0018}_{-0.0013} \text{ Hz}$ and $\alpha = 1.24^{+0.26}_{-0.21}$. Furthermore, via realistic simulations and using a maximum likelihood flux estimator we derive the bias between the input flux and the recovered one. We find that using our analytical expression for the covariance matrix of the correlated readout noise we disminish this bias by up to a factor of four with respect to the white noise approximation for the covariance matrix. Finally, we conclude that the final bias on the in-flight NISP flux measurements should still be negligible even in the white noise approximation, which is taken as a baseline for the EUCLID onboard processing.

Key words. Infrared detectors – HgCdTe detectors – Signal processing – covariance matrix – noise correlations

Ι. *II*.

Cosmology and The EUCLID mission EUCLID detector performance

IV.

V.

Towards more realistic cluster simulations

Conclusion and Perspectives

GALAXY CLUSTERS AND COSMOLOGY

- Clusters are formed by gravitational collapse
 - Largest gravitationally bound structures (Virialized)
 - Self-similarity, scaled copies of each others
- Dominated by DM (~85%), and formed by ionized gas (ICM) and Galaxies
- ▶ $10^{13}M_{\odot} < M_{cluster} < 10^{15}M_{\odot}$; 0 < z < 3
- Various cluster observables:
 - Optical and IR: Light from Galaxies
 - X-Ray: Bremsstrahlung emission
 - mm λ : SZ (Sunyaev-Zeldovich) effect, Inverse Compton of CMB γ and ICM e-
- Mass and redshift distribution of cluster (Cluster number counts) is sensitive to cosmological parameters.

CLUSTER NUMBER COUNTS

Halo Mass Function (HMF)

The Selection Function is the Instrumental Capability to detect a cluster. Thus it is the Probability of finding a cluster.

How to compute it?

- **Simulated Mock** Catalogue
- **Cluster injection method** - The one we will use

DETERMINE SELECTION FUNCTION

MOCK simulations

- Given a synthetic catalog of galaxies from numerical simulations (MOCK catalog)
- Apply detection algorithm
- Compared the Clusters from MOCK and detection algorithm catalog
- PROBLEM: Depends on simulations

COMPUTE COMPLETENESS

 $\blacktriangleright N_{detected}$ is the number of clusters we have after checking with the detection algorithm

 $\blacktriangleright N_{true}$ are the "true" clusters

SELECTION FUNCTION DETERMINATION: CLUSTER INJECTION METHOD

- We apply the cluster injection method using the EUCLID MOCK Catalog.
- Generate a catalogue from a simple 3D model of the cluster:
 - Construct bins of mass and redshift

 - catalogue

This method has some advantages:

- We keep the catalogue properties
- It could be used in the real data with some modifications

Simulate galaxies using the galaxy density profile, $n(r/R_{200})$, and the galaxy luminosity function, $\phi(m)$

We assign a sky position to each cluster and to each galaxy within the cluster to generate a

- We compute the Luminosity Function for the actual EUCLID simulations
- We create bins
 - Mass
 - Redshift
- Schechter Function (LF)
- We perform the MCMC fit in the Luminosity Function (LF)

Faint-end slope
Normalization
$$\phi(m) = 0.4 \log(10) \phi^{\star} 10^{0.4(m^{\star}-m)(\alpha+1)} \exp(-10) \phi^{\star}$$

Driver et al. 1994

Characteristic magnitude

LUMINOSITY FUNCTION

Luminosity Function

PARAMETERS EVOLUTION WITH THE MASS AND REDSHIFT

Characteristic magnitude m*

- Characteristic magnitude, m^* , shows evolution with redshift, but not with cluster mass
- Faint-end slope, α , shows evolution with redshift but not with cluster mass

Normalization, ϕ^* , does not show any clear evolution 16

Faint-end slope α

Normalization ϕ^*

PROFILE DISTRIBUTION OF THE RADIAL NUMBER DENSITY OF GALAXIES

- function

PARAMETERS EVOLUTION WITH THE MASS AND REDSHIFT

 \blacktriangleright Concentracion, c , shows evolution with cluster mass and also with redshift

For normalization, n₀, the evolution is difficult to interpret

CONCENTRATION, c

CLUSTER SIMULATION

EXAMPLE OF A SIMULATED CLUSTER

Simulated Cluster properties

- Cluster is more populated in the center
- Bright of galaxies showed in the colorbar
- The brightest galaxy is in the center
- There is no correlation between the magnitude of galaxies and their radial distribution

SIMULATED SKY

Cosmology and The EUCLID mission Ι. **EUCLID** detector performance *II*. **Preparation to cluster cosmology with EUCLID** *III*.

V.

Conclusion and Perspectives

- EUCLID catalogue is done with semi analytical models.
- Solving numerical simulations for baryonic component are called Hydrodynamical Simulations.
- Catalogue created by Hydrodynamical resimulations of Galaxy Clusters
- Fundamental equations of gravitation, hydrodynamics and perhaps radiative cooling and transfer are solved for a large number of points
- Resolution: $m_{DM} + m_{gas} = 1.5 \times 10^9 h^{-1} M_{\odot}$

THE 300 PROJECT

Blue color - Dark matter density Red color - galaxy brightness Symbol size - proportional to stellar mass

THE 300 PROJECT: DENSITY PROFILE DISTRIBUTION

Number Density profile

- We perform the same analysis as for the **EUCLID** Catalogue
- We study the distribution of the number of galaxies as a function of the radial distance as the magnitude distribution

There is no enough resolution for faint galaxies

Luminosity function

THE 300 PROJECT: HIGH DEFINITION CLUSTERS

Luminosity function for ONE cluster

25

Conclusion

- The Schechter Model for the HD cluster gives a good fit to the data
- On going work: HD Dark Matter simulations with better resolution than the EUCLID ones.
- **Example of resolution for a 1 Gpc box**
 - Millenium (EUCLID) -> 5200^3 particles
 - The 300th -> 3840^3 particles
 - The 300th HD -> 7680^3 particles
- The 300th HD has enough resolution for checking NFW model in the inner region and performing a better fit

I.Cosmology and The EUCLID missionII.EUCLID detector performanceIII.Preparation to cluster cosmology with EUCLIDIV.Towards more realistic cluster simulations

CONCLUSIONS AND FUTURE WORK

• CONCLUSIONS

- We characterised the NISP detector noise and checked that the actual On-flight configuration for EUCLID works fine We were able to recreate the 3D properties of a Cluster from analytical properties and generate a random catalogue We checked the resolution limits of the 300th project and we studied 3D properties of the 300th clusters

- Last thesis year perspectives:
 - Function
 - **Check the 300th High Definition cluster properties**
 - Study Mass Scaling Relations for high redshift clusters: use SZ data (Planck) to calibrate the mass for EUCLID clusters

Add random catalogue to existing data and check with matching cluster detection -> Obtaning Selection

A.JIMENEZ - MUNOZ, J.F.MACIAS-PEREZ

THANKS FOR YOU ATTENTION !

A.JIMENEZ - MUNOZ, J.F.MACIAS-PEREZ

ADDING FIELD GALAXIES

Field Galaxies Distribution

Field Galaxies

- We add the Field Galaxies to the Cluster simulation just for a first test of the detection algorithm.
- For the real cluster injection method we only need the clusters.
- The distribution shows the number of galaxies as a function of the redshift

$$\mathbf{P}(\mathbf{z}) = \mathbf{z}^{\alpha} \mathbf{exp} \left[-\left(\frac{\mathbf{z}}{\mathbf{z}_0}\right)^{\beta} \right]$$

$\Delta = \frac{\langle \rho(r \langle R) \rangle}{\rho_c(z)}.$

 $R_{\Delta} \equiv \left(\frac{M_{\Delta}}{\frac{4}{3}\pi\rho_c\Delta}\right)^{\frac{1}{3}}$

POWER SPECTRUM

 $\frac{dN}{dz} = \int d\Omega \int \widehat{X}(z, M, l, b) \frac{dn}{dz dM d\Omega} dM$

 $\frac{dN}{dz} = \int d\Omega \int \widehat{X}(z, M, l, b) \frac{dn}{dz dM d\Omega} dM$

POWER SPECTRUM

$$\frac{dn}{d\ln M} = M \cdot \frac{\rho_0}{M^2} f(\sigma) \left| \frac{d\ln \sigma}{d\ln M} \right|$$

POWER SPECTRUM

OPTICAL AND IR IMAGES

- Visible and IR emission:
 - Light from stars in galaxies
- How to determine the Mass of the cluster ?
 - Richness (number of galaxies)
 - Luminosity profile
 - Gravitational lensing
 - Velocity dispersion
- Euclid Cluster Finder Algorithm

- Luminosity Function:
 - Surface density of galaxies as a function of the magnitude, $\phi(m^*)$
- Density Profile:
 - galaxy volume density distribution, n(r)

Name	CFC participation	Detection principle	Main reference	Cluster properties assumptions	Use of calibration field	Membership
AMASCFI	1,2,3,4	Adaptive kernel	Adami & Mazure (1999)	Typical size and m_{tr}^{\star} calibration	Yes	Х
AMICO	1,2,3,4	Optimal filtering	Bellagamba et al. (2018)	LF and profile	No	\checkmark
HCFA	3,4	Hierarchical finder	Díaz-Sánchez (in prep.)	Typical size only	No	\checkmark
PZWav	1,2,3,4	Wavelet adaptive	Gonzalez (2014)	Typical size and m_H^{\star} evolution	No	Х
sFoF	1,2,3,4	Friends-of-friends	Farrens et al. (2011)	None	Yes	\checkmark
WaZP	1,2,3,4	Wavelet	Benoist (2014)	Typical size and m_H^{\star} evolution	Yes	\checkmark
RedGOLD	1,2	Red sequence	Licitra et al. (2016a)	—	-	_
Voronoi	1	Voronoi tessellation	Iovino (in prep.)	_	-	_

R. Adam et al. 2019

NASA Hubble Space Telescope Image - STScI-2019-58

- - Fundamental equations of gravitation, hydrodynamics and perhaps radiative cooling and transfer are solved for a large number of points (arranged either on a grid or following the trajectories of the fluid flow)
 - Resolution: $m_{DM} + m_{gas} = 1.5 \times 10^9 h^{-1} M_{\odot}$
 - Fluid equations
 - SPH smooth particle hydrodynamics. Fluid equations, gravity equations as a mesh

$$\rho_{i} = \sum_{j} m_{j} W(\frac{r_{ij}}{h_{i}})$$

$$A_{i}\rho_{i} = \sum_{j} A_{j} m_{j} W(\frac{r_{ij}}{h_{i}})$$

$$p_{i} = \frac{1}{\rho_{i}} \sum_{j} p_{j} m_{j} W(\frac{r_{ij}}{h_{i}})$$

$$\frac{\mathrm{d}\mathbf{v}}{\mathrm{d}t} = -\frac{1}{\rho} \nabla p$$

$$\frac{\mathrm{d}\vec{v}_{i}}{\mathrm{d}t} = -\sum_{j=1}^{N} m_{j} \left[f_{i} \frac{P_{i}}{\rho_{i}^{2}} \nabla_{i} W_{ij}(h_{i}) + f_{j} \frac{P_{j}}{\rho_{j}^{2}} \nabla_{i} W_{ij}(h_{j}) \right]$$

THE 300 PROJECT

Moving Particles to Mesh Points in a Particle Mesh Method

 $\frac{\partial^2 \phi}{\partial x^2} = \rho(x)$

$$\frac{\frac{\phi(x+\Delta)-\phi(x)}{\Delta} - \frac{\phi(x)-\phi(x-\Delta)}{\Delta}}{\Delta} = \frac{\phi(x+\Delta) + \phi(x-\Delta) - 2}{\Delta^2}$$
$$= \rho(x)$$

$$\begin{split} \phi(x+\Delta) + \phi(x-\Delta) - 2\phi(x) &= \sum_{k} \hat{\phi}(k) \left\{ \exp(ik(x+\Delta)) + \exp(ik(x-\Delta)) - 2\exp(ikx) \right\} \\ &= \sum_{k} \hat{\phi}(k) \exp(ikx) \left\{ \exp(ik\Delta) + \exp(-ik\Delta) - 2 \right\} \\ &= \sum_{k} \hat{\phi}(k) \exp(ikx) \left\{ 2\cos(k\Delta) - 2 \right\} \\ &= \sum_{k} \hat{\phi}(k) \exp(ikx) \left\{ -4\sin^{2}(k\Delta/2) \right\} \\ &= \Delta^{2} \sum_{k} \hat{\rho}(k) \exp(ikx) \\ \hat{\phi}(k) &= -\frac{\hat{\rho}(k)}{4\Delta^{2} \sin^{2}(k\Delta/2)} \approx -\frac{\hat{\rho}(k)}{k^{2}} \end{split}$$

3D PROFILE OF THE CLUSTER SPACE DENSITY

$\mu = gal/vol/clusters$ error = $\sqrt{\mu/vol}$

3D NFW function

SCALING RELATIONS

- Once we study the Selection Function, for doing Cosmology we need the mass
- Mass is not an observable
- Scaling Relation: The link between two physical properties such as Mass, Number of Galaxies (Richness), SZ (Sunyaev-Zeldovich) effect...etc
- Mock EUCLID catalogue -> Richness, Mass
- SZ Sunyaev-Zeldovich effect-> Distorsion of CMB electromagnetic spectrum due to Inverse Compton Scattering with ionized gas of the cluster , $\mathbf{y} \propto \mathbf{P}_{\mathbf{e}}$
- SZ is measured through the Compton Parameter, Y
- **Estimate mass of a cluster by scaling relations of observables**
 - Since we have Planck data, and the Scaling Relation of SZ effect with Mass, we will try to use this.

- For each cluster in EUCLID we compute the Compton Parameter Y
- We create bins in Mass and Redshift
- We stacked the Y and Mass value for each cluster in a bin (black points in the figure)
- Using Planck noise maps we have a realistic approximation
- We recover the Y vs Mass Scaling Relation
- It is possible to use Planck Data to calibration Scaling **Relations for EUCLID**
- On going work: Richness vs Mass and Richness vs SZ.

SCALING RELATIONS

EXAMPLE OF A CLUSTER

Considerations:

- DM Particles > 20 (For having a galaxy)
- Luminosity > 0 (For having stars —> A galaxy)
- Resolution > 0.99
- h = 0.677

• Only Direct substructures from the Host Halo (not sub-substructures, for first halo ~ 20)

Corrections from Absolute to Apparent magnitude:

- K correction a correction factor needed to convert from the observed band to the rest-frame band
- \bullet μ relationship between bolometric (ie, integrated over all frequencies) flux S and bolometric luminosity L

K CORRECTION - HD 0323 CLUSTER

 $\mu = 5 \log \frac{D_L}{10pc} \mid D_L = (1+z)^2 D_A$

HD CLUSTER

► 324 NON-HD CLUSTERS

K CORRECTION – HD 0323 CLUSTER

- gravity governs large scale structure evolution via gravitational collapse
- large scale structures in the universe organise in the form of filaments and halos
- the distribution in mass and redshift of the halos is given by the mass function, which depends on cosmology (Press & Schechter 1974)
- halos are rescaled copies one of each other, their density radial distribution has a generic form (Navarro, Frenk & White 1997)
- collapse does not proceed to a point but reaches virial equilibrium
- most massive halos form last and give rise to clusters of galaxies

MULTI WAVELENGTH APPROACH

Multi-wavelength approach is mandatory

member optical & IR galaxy distribution (density distribution proxy and cluster detection)

- number of galaxies, richness
- radial profile
- velocity dispersion
- redshift of the cluster

weak & strong lensing on background galaxies (density distribution)

X-ray emission from ICM hot gas (gas density and cluster detection)

Sunyaev-Zeldovich effect (inverse Compton scattering of hot electrons with CMB photons)

- thermal (gas pressure and cluster detection)
- kinetic (velocity distribution)

 radio emission (central AGN, radio halo in shocks), helps reducing bias in mass estimates

COMPARING SURVEYS

 need to use ground-based data for photo-z reconstruction of galaxies: agreement with ground-based surveys like CFHT, KIDs, LSST, DES, and others being studied

- Observing 4 cycles of about 900 s followed by depointing (slew)
- Calibration on specific targets
- 15000 deg2 covered in 6 years

IP Handara Dánam

NISP CYCLE

COSMOLOGICAL PROBES EUCLID

Weak lensing (WL)

- distribution of matter, expansion history, growth rate, tomography
- 3-D cosmic shear measurements 0 < z < 2
- shape and photo-z from optical and NIR data
- 1.5 billion galaxies

Galaxy clustering (GC)

- distribution of matter, expansion history, growth rate, tomography
- 3-D position measurements 0.7 < z < 2
- 3D distribution of galaxies from spectroscopy redshift
- measure position of 50 millions galaxies

Clusters of galaxies

- measure cluster number counts as a statistics,
- detection of about 60000 clusters

measure cluster number counts as a function mass and redshift, power spectrum

- ✓ Large sky coverage: covers both north and south hemisphere
- ✓ Strong statistics
- \checkmark Relative well control selection function: all LCDM clusters with M > 2 10¹⁴ M \odot are detected at 3 sigma up to redshift 2
- ✓ High redshift tail
- ✓ Homogeneous detection properties across the sky
- ✓ State-of-art weak lensing mass estimates
- ✓ Multi-probe analysis: richness, radial profiles, velocity dispersion with spectroscopy
- ✓ Multi-wavelength synergy with other satellite experiments: Planck, e-Rosita, Athena+

WHY EUCLID

FoM ~ 1500(WL&Galaxie)-4000 (all) ~ 900 members European lead project / ESA Space telescope / 1.2 m mirror Launch : 2019 Mission length : 6 years 1 exposure depth : 24 mag Survey Area : 15 000 square degrees (.36 sky) Filters : 1 Visible(550-900nm)+ 3 IR(920-2000 nm + NIR spectroscopy (1100 – 2000 nm)

next decade.

Major contributions to both projects from French teams

EUCLID – LSST

&	Large Synaptic Survey Telescope					
	FoM > 800 (WL,BAO, SN)					
	~ 450 Core members + 450 to come					
	US lead project / NSF-DOE Ground Telescope / 6.5 m effective mirror 1 st light : 2019 Observation length : 10 years					
	1 exposure depth : 24 mag (i) (~27 in 10 years) Survey Area : 20 000 square degrees (.48 sky)					
ı)	Filters : 6 filters (320-1070 nm)					

→2 complementary approaches to address the question of the acceleration of the Universe and the nature of the Dark Energy in the

Photometric IR images up to $M_{AB} = 24.5$

NI-GWA

Photometry the peak brightness of the object through various filters. An object that is redshifted will have its peak brightness appear through filters towards the red end of the spectrum. -Far Away objects

measurement

NISP

Weiner, B et al. 2012

Photometry

• Spectroscopy - $H\alpha$ spectral line

Slitless-Spectroscopy

NISP measurement cycle

- **1.** GWA angle 1 + FWA open
- 2. GWA angle 2 + FWA open
- **3.** GWA angle 3 + FWA open
- **4.** GWA open + FWA filter Y
- 5. GWA open + FWA filter J
- **6.** GWA open + FWA filter H
- 7. FWA closed.

