
PHD STUDENT: ALEJANDRO JIMENEZ MUNOZ  
SUPERVISOR: JUAN FRANCISCO MACIAS 
PEREZ

PREPARATION FOR THE ANALYSIS AND 
INTERPRETATION OF EUCLID CLUSTER 
COSMOLOGY



2

OUTLINE

I. Cosmology and The EUCLID mission 

II. EUCLID detector performance 

III. Preparation to cluster cosmology with EUCLID 

IV. Towards more realistic cluster simulations 

V. Conclusion and Perspectives



▸ Cosmology is the scientific study of the origin and evolution of 
the Universe. 

▸ The Universe is mostly composed by Dark Matter and Dark 
energy and only 5% of the Universe belongs to the matter we 
know 

▸ Dark matter is responsible for the structure formation in the 
Universe. 

▸ Example: Rotation curves of galaxies, CMB cosmological 
parameters estimation, mass measurement from clusters… 

▸ Dark energy is the responsible of the accelerated 
expansion of the Universe  

▸ Supernovae Ia, CMB cosmological parameter estimation… 

▸ To try to understand the Universe, spacecraft missions would 
be very useful, for example the Euclid mission
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COSMOLOGY

Z = 0

ΩΛ = 0.7

DM 27%
BM 5%

DE 68%



▸ Medium Class ESA mission expected to be launched in 
2022 

▸ Designed to study the nature of Dark Matter and Dark 
Energy 

▸ . Cosmological Probes 

▸ Weak Lensing (WL) - Measure cosmic shear 

▸ Baryonic Acoustic Oscillations (BAO) - Galaxy 
clustering 

▸ Cluster of Galaxies - Cluster abundance 

▸ The Euclid system shall perform a wide survey of at least 
15,000 deg2  and a deep survey of 40 deg2 

▸ Around 2 billion galaxies 
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EUCLID

Z = 0

ΩΛ = 0.7

EUCLID Galactic Map coverage



▸ Visible and IR emission: 

▸ Light from stars in galaxies —> Galaxy Clusters 

▸ We need photometry and spectroscopy for galaxy 
properties and redshift (z) measurements 

▸ Composed by two instruments with a common field of 
view ~ 0.54 deg2: 

▸ VIS: Visual imager (550-920nm) and a magnitude 
limit of  

▸ Performing Weak Lensing with high quality 

▸ NISP: Near Infrared SpectroPhotometer.  

▸ Photometric IR images. Filters Y,J,H 
( 920-2000nm) and a magnitude limit of 

 

▸ Slitless Spectroscopy (1100-2000nm), and a 
magnitude limit of . 

▸ Redshift precision:   ;      

MAB = 24.5

mAB = 24.5

mAB = 19.5

dz /z < 0.001 0 < z < 2
5

EUCLID

Z = 0

ΩΛ = 0.7

Photometry

▸ Measure flux (f) and then the 
magnitude: m = − 2 . 5 log f + a

Spectroscopy

▸ Measure redshift



NISP READOUT MODE

▸ NISP - 16 H2RG detectors - Matrix of 2048x2048 
pixels 

▸ EUCLID on-board data processing assumes a white 
noise approximation for the readout noise 

▸ GOAL -  Characterize the readout noise

•1 ramp = 1 pixel 

•Non-destructive frames 

• Signal = Photon flux 
(Dark)  + Poisson 
Associated noise + 
Readout noise 

•Dark Flux is accumulated 
in the frames -> slope 

•We remove the dark flux 
for keeping only the 
readout noise 

6

How to acquire data 

 (Readout mode)

NISP detector real data

Frame



NISP READOUT NOISE CHARACTERIZATION

- Power Spectrum 

- Smooth 

- Fit
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•
    - Power Spectrum 

•  Fitting procedure and obtaining  

•  -> slope due to the excess of noise at low frequencies  

•  -> where the slope begins  

•  - > The amplitude of the flat part of the spectrum

P(f) =
σ2

2
1 + ( f

fknee )
α

σ, fknee, α

α

fknee

σ

Readout noise model

‣ We perform the fit for the 2048x2048 pixels  

‣  

‣  

‣

σ = 19 . 70+1.11
−0.78 e−/ Hz

fknee = 0 . 0052+0.0018
−0.0013 Hz

α = 1 . 24+0.26
−0.21

Average best fit values

▸ After Dark Correction we proceed to characterize the readout noise



MAXIMUM LIKELIHOOD FLUX ESTIMATOR

▸  

▸ g  is the expected flux  

▸ Covariance Matrix depends on the Readout Noise 

▸ We perform Monte Carlo simulations of the  - like noise to 
obtain the covariance matrix 

L =
1

2π |D |
exp [−

1
2

(ΔG − g)D−1(ΔG − g)T]

(1/f)α

Maximum Likelihood Flux Estimator

f(k)
i − Associated Poisson Uncertainty

ρ(k)
i − Readout Noise −(1/f)α − like noise

Gk =
1
M

M

∑
i=1

S(k)
i
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bias =
Fout − Fin

Fin

Group Definition in MACC mode

Group differences:  ΔGk = Gk+1 − Gk

Group differences Covariance Matrix: 
 D = E[(ΔGk − E[ΔGk])(ΔGL − E[ΔGL])]

Frame

Fin [e−/s]

N
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m
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bias =
Fout − Fin

Fin

 - like noise 
approximation

(1/f)α

White noise 
approximation

EUCLID background range

EXPECTED ON BOARD FLUX BIAS AND CONCLUSION

Conclusion

▸  The NISP detectors data show correlated readout noise 

▸  We find that the flux bias can be up to four times larger than 
when accounting for the correlation in the readout noise 

▸  This bias is negligible with respect the expected uncertainties 
for typical sky background signals 

▸  we expect no significant in the on-board fluxed measured by 
EUCLID 

▸ Paper submitted to internal referees

▸ To measure the flux on board EUCLID assumes a white 
noise approximation for the readout noise 

▸ We evaluate the bias induced for this approximation 

Fin [e−/s]

Bi
as

[%
]
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▸ Clusters are formed by gravitational collapse 

▸ Largest gravitationally bound structures (Virialized)  

▸ Self-similarity, scaled copies of each others 

▸ Dominated by DM (~85%), and formed by ionized gas (ICM) and Galaxies 

▸   ;     

▸ Various cluster observables: 

▸ Optical and IR: Light from Galaxies 

▸ X-Ray: Bremsstrahlung emission 

▸ mm : SZ (Sunyaev–Zeldovich) effect, Inverse Compton of CMB  and 
ICM e- 

▸ Mass and redshift distribution of cluster (Cluster number counts) is sensitive 
to cosmological parameters.

1013M⊙ < Mcluster < 1015M⊙ 0 < z < 3

λ γ
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Ionized Gas 12%

Galaxies 3%

DM 85%

GALAXY CLUSTERS AND COSMOLOGY

Z = 1.4 Z = 0.6 Z = 0

ΩΛ = 0

ΩΛ = 0.7

S. Borgani & L. Guzzo + 2001
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CLUSTER NUMBER COUNTS

dN
dz

= ∫ dΩ∫ ̂X (z, M, l, b)
dn

dzdMdΩ
dM

Catalog Selection Function (SF)

Halo Mass Function (HMF)

▸ The Selection Function is 
the Instrumental Capability 
to detect a cluster. Thus it is 
the Probability of finding a 
cluster. 

▸ How to compute it? 

▸ Simulated Mock 
Catalogue 

▸ Cluster injection method 
- The one we will use

Cluster number counts

volume
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DETERMINE SELECTION FUNCTION

                                            

 C =
Ndetected

Ntrue

• Given a synthetic catalog of galaxies 
from numerical simulations (MOCK 
catalog) 

• Apply detection algorithm 

• Compared the Clusters from MOCK 
and detection algorithm catalog  

•PROBLEM: Depends on simulations 

MOCK simulations
• From Survey Data we apply detection 
algorithm 

• Study properties of detected clusters  

• Simulate a cluster catalogue with this 
properties 

• Inject it into the Survey Data 

• Reapply Detection algorithm and look for the 
clusters we have defined 

Cluster Injection

‣  is the number of clusters we have after checking with the detection 
algorithm 

‣  are the ‘’true’’ clusters

Ndetected

Ntrue

COMPUTE COMPLETENESS 
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SELECTION FUNCTION DETERMINATION: CLUSTER INJECTION METHOD

Z = 0

ΩΛ = 0

ΩΛ = 0.7

๏ We apply the cluster injection method using the EUCLID MOCK Catalog. 

๏ Generate a catalogue from a simple 3D model of the cluster: 

๏  Construct bins of mass and redshift 

๏ Simulate galaxies using the galaxy density profile, , and the galaxy luminosity function,  

๏  We assign a sky position to each cluster and to each galaxy within the cluster to generate a 
catalogue 

๏  This method has some advantages: 

๏ We keep the catalogue properties 

๏  It could be used in the real data with some modifications

n(r/R200) ϕ(m)
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LUMINOSITY FUNCTION 

Z = 0

ΩΛ = 0

‣ We compute the Luminosity Function for the actual EUCLID simulations  

‣ We create bins 

‣ Mass  

‣ Redshift 

‣ Schechter Function (LF) 

‣ We perform the MCMC fit in the Luminosity Function (LF)

Driver et al. 1994 

Normalization

Faint-end slope

Characteristic magnitude

Luminosity Function

ϕ(m) = 0.4 log(10)ϕ⋆100.4(m⋆−m)(α+1) exp(−100.4(m⋆−m))
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PARAMETERS EVOLUTION WITH THE MASS AND REDSHIFT 

Z = 0

ΩΛ = 0

Characteristic magnitude m* Faint-end slope α Normalization ϕ*

▸  Characteristic magnitude, , shows evolution with redshift, but not with cluster mass 

▸  Faint-end slope, , shows evolution with redshift but not with cluster mass 

▸  Normalization, , does not show any clear evolution

m*

α

ϕ*
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 PROFILE DISTRIBUTION OF THE RADIAL NUMBER DENSITY OF GALAXIES 

Z = 0

ΩΛ = 0

‣ We compute the Density Profile for the actual EUCLID simulations  

‣ We create bins 

‣ Mass  

‣ Redshift 

‣ Theoretical 3D NFW model. We add a truncation parameter due to resolution 
problem in the outer region of the cluster due to the simulations. 

‣ We perform the MCMC fit in the projected Profile distribution (NFW) 
function

n(r/R200) =
n0

(cr/R200)(cr/R200 + 1)2
ℋ(rmax − r)

Navarro et al. 1996 

Normalization

Concentration Truncation radius

2D projected NFW function
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PARAMETERS EVOLUTION WITH THE MASS AND REDSHIFT 

Z = 0

ΩΛ = 0

NORMALIZATION, n0 CONCENTRATION, c

▸  Concentracion,  , shows evolution with cluster mass and also with redshift  

▸ For normalization, , the evolution is difficult to interpret 

c

n0
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CLUSTER SIMULATION

if Ngal > Nvis

n(r/R200; n0, c, rmax)

2D Projection

Galaxy Distribution

Magnitude distribution

ϕ⋆(m; ϕ⋆, m⋆, α)

RA, DEC and Redshift

Catalog: Cluster ID, 
Galaxy ID, RA, DEC, z, m
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EXAMPLE OF A SIMULATED CLUSTER

•  Cluster is more populated in the center 

• Bright of galaxies showed in the 
colorbar 

• The brightest galaxy is in the center 

• There is no correlation between the 
magnitude of galaxies and their radial 
distribution 

Simulated Cluster properties
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SIMULATED SKY

Z = 0.6 Z = 0

ΩΛ = 0

ΩΛ = 0.7

Conclusion

▸ We have simulated a projection of galaxies on 
the sky with analytical methods  

▸ We studied 3D properties of clusters (NFW + LF) 

▸ Bright Peaks in the figure are clusters  

▸ Fields galaxies with the same cluster galaxy's 
properties 

▸ On going work: obtaining the Selection Function 
from simulated catalog 

Galaxy Cluster (NFW + LF)

Field galaxies

Equatorial coordinate system
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▸ EUCLID catalogue is done with semi analytical 
models.  

▸ Solving numerical simulations for baryonic 
component are called Hydrodynamical 
Simulations. 

▸ Catalogue created by Hydrodynamical re-
simulations of Galaxy Clusters 

▸ Fundamental equations of gravitation, 
hydrodynamics and perhaps radiative cooling and 
transfer are solved for a large number of points 

▸ Resolution: mDM + mgas = 1.5 × 109h−1M⊙
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THE 300 PROJECT

Z = 0

Blue color - Dark matter density

Red color - galaxy brightness 


Symbol size - proportional to stellar mass
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THE 300 PROJECT: DENSITY PROFILE DISTRIBUTION

▸ We perform the same 
analysis as for the 
EUCLID Catalogue 

▸ We study the 
distribution of the 
number of galaxies as 
a function of the radial 
distance as the 
magnitude distribution 

Number Density profile Luminosity function

ϕ(m) = 0 . 4 log(10)ϕ⋆100.4(m⋆−m)(α+1) exp(−100.4(m⋆−m))n(r/R200) =
n0

(cr/R200)(cr/R200 + 1)2
ℋ(rmax − r)

▸ There is no enough resolution for faint galaxies  

ρ(
N g

al
*

N
−

1
cl

us
te

r*
R

−
3 )

r/R200
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THE 300 PROJECT: HIGH DEFINITION CLUSTERS

Z = 1.4 Z = 0

ΩΛ = 0

ΩΛ = 0.7

Conclusion

▸ The Schechter Model for the HD cluster gives a good 
fit to the data 

▸ On going work: HD Dark Matter simulations with 
better resolution than the EUCLID ones. 

▸  Example of resolution for a 1 Gpc box 

▸  Millenium (EUCLID)  -> 5200^3 particles 

▸  The 300th -> 3840^3 particles 

▸  The 300th HD -> 7680^3 particles 

▸ The 300th HD has enough resolution for checking 
NFW model in the inner region and performing a 
better fit

Luminosity function for ONE cluster
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CONCLUSIONS AND FUTURE WORK

Z = 0

ΩΛ = 0

ΩΛ = 0.7

๏ CONCLUSIONS 

๏  We characterised the NISP detector noise and checked that the actual On-flight configuration for EUCLID works fine  

๏  We were able to recreate the 3D properties of a Cluster from analytical properties and generate a random catalogue 

๏ We checked the resolution limits of the 300th project and we studied 3D properties of the 300th clusters 

๏  Last thesis year perspectives: 

๏ Add random catalogue to existing data and check with matching cluster detection -> Obtaning Selection 
Function 

๏  Check the 300th High Definition cluster properties  

๏ Study Mass Scaling Relations for high redshift clusters: use SZ data (Planck) to calibrate the mass for EUCLID 
clusters
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ADDING FIELD GALAXIES

Z = 1.4

Z = 0

ΩΛ = 0.7

C. Chang et al. 2013 

Field Galaxies

▸ We add the Field Galaxies to the Cluster simulation 
just for a first test of the detection algorithm.  

▸ For the real cluster injection method we only need 
the clusters. 

▸ The distribution shows the number of galaxies as a 
function of the redshift 

▸
P(z) = zαexp −( z

z0 )
β

Field Galaxies 
Distribution
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R500
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NISP



POWER SPECTRUM
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POWER SPECTRUM
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POWER SPECTRUM
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OPTICAL AND IR IMAGES

Z = 1.4 Z = 0

ΩΛ = 0

ΩΛ = 0.7

▸ Visible and IR emission: 

▸ Light from stars in galaxies 

▸ How to determine the Mass of the cluster ?  

▸ Richness (number of galaxies) 

▸ Luminosity profile  

▸ Gravitational lensing 

▸ Velocity dispersion 

▸ Euclid Cluster Finder Algorithm

NASA Hubble Space Telescope Image - STScI-2019-58

R. Adam et al. 2019

▸ Luminosity Function: 

▸ Surface density of galaxies 
as a function of the 
magnitude,  

▸ Density Profile:  

▸ galaxy volume density 
distribution, 

ϕ(m*)

n(r)



▸ Fundamental equations of gravitation, hydrodynamics 
and perhaps radiative cooling and transfer are solved 
for a large number of points (arranged either on a grid 
or following the trajectories of the fluid flow)  

▸ Resolution:  

▸ Fluid equations  

▸ SPH smooth particle hydrodynamics. Fluid equations, 
gravity equations as a mesh 

mDM + mgas = 1.5 × 109h−1M⊙
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THE 300 PROJECT

Z = 0
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3D PROFILE OF THE CLUSTER SPACE DENSITY 

Z = 0

ΩΛ = 0

3D NFW function

n(r/R200) =
n0

(cr/R200)β(cr/R200 + 1)α

Normalization

Concentration Exponent Exponent

μ = gal/vol/clusters
error = μ/vol



Z = 0.4 Z = 0.5 Z = 0.6

Z = 0.4 + 
Dark Galaxies

Z = 0.5+ Dark 
Galaxies

Z = 0.6 + 
Dark Galaxies



Z = 0.8 Z = 1 Z = 1.4

Z = 0.8 + 
Dark Galaxies

Z = 1 + Dark 
Galaxies

Z = 1.4 + 
Dark Galaxies
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SCALING RELATIONS

Z = 1.4

ΩΛ = 0

ΩΛ = 0.7

▸ Once we study the Selection Function, for doing Cosmology 
we need the mass 

▸ Mass is not an observable 

▸ Scaling Relation: The link between two physical properties such 
as Mass, Number of Galaxies (Richness), SZ (Sunyaev–Zeldovich) 
effect…etc 

▸ Mock EUCLID catalogue -> Richness, Mass 

▸ SZ Sunyaev–Zeldovich effect->  Distorsion of CMB 
electromagnetic spectrum due to Inverse Compton Scattering 
with ionized gas of the cluster ,  

▸ SZ is measured through the Compton Parameter, Y 

▸ Estimate mass of a cluster by scaling relations of observables  

▸ Since we have Planck data, and the Scaling Relation of SZ 
effect with Mass, we will try to use this.

y ∝ Pe

Richness,  (EUCLID)λ

Mass Y (PLANCK)

Scaling Relations

Y − M

λ − Yλ − M
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SCALING RELATIONS

Z = 0

▸ For each cluster in EUCLID we compute the Compton 
Parameter Y 

▸ We create bins in Mass and Redshift 

▸ We stacked the  Y and Mass value for each cluster in a bin 
(black points in the figure) 

▸ Using Planck noise maps we have a realistic 
approximation 

▸ We recover the Y vs Mass Scaling Relation 

▸ It is possible to use Planck Data to calibration Scaling 
Relations for EUCLID 

▸ On going work: Richness vs Mass and Richness vs SZ.
E(

z)
−

2/
3 D

−
2

A
Y



‣ Considerations: 
‣ DM Particles > 20 (For having a galaxy) 
‣ Luminosity > 0 (For having stars —> A galaxy) 
‣ Only Direct substructures from the Host Halo (not sub-substructures, for first halo ~ 20) 
‣ Resolution > 0.99 
‣ h = 0.677 

EXAMPLE OF A CLUSTER
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K CORRECTION - HD 0323 CLUSTER

Z = 0.6 Z = 0

ΩΛ = 0

ΩΛ = 0.7

▸  

▸

mH = MH + μ + KH

μ = 5 log
DL

10pc
  |  DL = (1 + z)2DA

‣ Corrections from Absolute to Apparent magnitude: 
‣ K correction - a correction factor needed to convert from the observed band  to 

the rest-frame band 
‣  - relationship between bolometric (ie, integrated over all frequencies) flux S 

and bolometric luminosity L
μ
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APPARENT MAGNITUDE - COMPARISON

Z = 0.6 Z = 0

ΩΛ = 0

ΩΛ = 0.7

▸ HD CLUSTER ▸ 324 NON-HD CLUSTERS



K CORRECTION - HD 0323 CLUSTER



MULTI WAVELENGTH APPROACH



COMPARING SURVEYS



NISP CYCLE



COSMOLOGICAL PROBES EUCLID



WHY EUCLID



EUCLID - LSST
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NISP

Slitless Spectroscopy up to 
MAB = 19 . 5

Photometric IR images up to MAB = 24 . 5

▸ Photometry the peak brightness of the 
object through various filters. An object 
that is redshifted will have its peak 
brightness appear through filters 
towards the red end of the spectrum. - 
Far Away objects 

▸ Spectroscopy -  spectral line 
measurement

Hα

1. GWA angle 1 + FWA open  

2. GWA angle 2 + FWA open 

3. GWA angle 3 + FWA open 

4. GWA open + FWA filter Y 

5. GWA open + FWA filter J 

6. GWA open + FWA filter H 

7. FWA closed.

Spectrometry

Photometry

Dark

560s

270s

NISP measurement cycle

Weiner,B  et al. 2012

Photometry Slitless-Spectroscopy


