Search for Black Holes at LHC

Ali Sabetfakhri Chris Harris

University of Cambridge - ATLAS Collaboration

February 19, 2003

- Introduction
- Simulation of Black Holes (BH)
- Experimental Search
- Grey Body Factors
- Summary

In (n+4) Dimensions $M_p \sim \text{TeV}$

Extra space dimensions $\stackrel{@ \ LHC}{\longrightarrow}$ quantum sized BH

Event horizon:
$$R_H \sim \frac{1}{M_p} \left(\frac{M_{BH}}{M_p}\right)^{\frac{1}{n+1}}$$

Semiclassical $(M_{BH} > M_P)$ cross section $\sigma pprox \pi R_H^2$

$$\sigma \sim \begin{cases} \text{nb} & : \text{ for } M_p = 2 \text{ TeV }, \ n = 7 \\ 100 \text{ fb} & : \text{ for } M_p = 6 \text{ TeV }, \ n = 3 \end{cases}$$

$$\mathsf{BH} \xrightarrow{\mathrm{decay}} jets + leptons + \gamma + \dots$$

$$T_H \sim \frac{n+1}{R_H}$$

Experimental Signatures

- ▶ Large cross section
- \triangleright Large E_T
- Large Mulitiplicity
- ▶ High sphericity events

$$\begin{array}{c} \textbf{BH decay phases} \\ \textbf{Balding} \\ \textbf{Hawking Evaporation} \\ \textbf{Spin - down} \\ \textbf{Swcharzschild} \\ \textbf{Planck Phase} \end{array}$$

Simulation of BH decay in Herwig

- Spinless Black Hole.
- \bigcirc Hawking Evaporation Phase \rightarrow (main) Mass Loss.
- Includes the BH <u>Recoil</u>.
- \bigcirc Time Evolution $T_H(t)$.
- \bigcirc BH \rightarrow *SM* particles on the *brane*.
- Black-body approximation for BH evaporation.

See more on *Grey Body Factors*

- The flavor independent nature of BH decays.
- The generated events are passed through the ALTFAST

Problem of Determination of n with Standard Method

It is assumed that the BH spends most of its time near the initial T_H .

- \circ Use e, γ spectrum o Estimate T_H .
- \circ Ignoring time variation of T_H .
- $\circ \log(T_H) \sim \frac{-1}{n+1}log(M_{BH}) \to \text{Find } n$.

For
$$n=2$$
 and $M_p=1$ TeV;
Fit gives $n=1.7\,\pm\,0.3$

It is not possible to ignore the time variation of $$T_{H}$$

For n=2 and $M_p=1$ TeV with time variation; Fit gives $n=3.8\pm1.0$ (Chris Harris)

Find a <u>(kinematic) variable</u> of the BH which <u>depends</u> (stongly) on $n \to \text{measure}$ directly the true <u>number</u> of space dimensions.

2-body Remnant BH

2-body and 4-body remnant BH

Jet Multiplicity for 6 and 10 Dimension BH

Average Multiplicity >> 1

Event Shape for 6 Dimensional BH

Event Shape for 10 Dimensional BH

Event Circularity

D = 10

Relatively similar distributions for D = 8 BH.

Hard to distinguish 8-D from 10-D BH

Thrust
Oblateness
Sphericity
Apalnarity

		$\underline{\hspace{1cm}}$	∞	<u> </u>
Particle Trajectory	T	О	S	A
	$\rightarrow \frac{1}{2}$	$\rightarrow 0$	→ 1	$\rightarrow \frac{1}{2}$
	$\rightarrow 1$	$\rightarrow 0$	$\rightarrow 0$	$\rightarrow \frac{1}{2}$
	~ ³ / ₄	~ \frac{1}{4}	~ \frac{1}{2}	$\rightarrow 0$
2-body, D = 6	0.74	0.22	0.38	0.01
4-body , $D = 6$	0.73	0.20	0.41	0.11

0.88

0.80

0.23

0.23

0.25

0.25

0.02

0.05

2-body , D = 10

4-body, D = 10

Average Multiplicity

- For the *majority* of the decay (Semi-classical regime)
 - ▶ Average Multiplicity >> 1
 - $ightharpoonup M_{BH} >> M_p$ and $M_{BH} >> T_H$.
- These conditions start <u>breaking down</u> towards the <u>end of the decay</u>. (Theoretically invalid regime)
- \bigcirc <u>Most</u> of the <u>problems</u> are for the low multiplicity events \longrightarrow higher <u>dimensional</u> BH.

More study needs to be done!

Grey Body Factors

▶ Modify the spectrum of emitted particles from that of the perfect thermal *black-body*.

- ightarrow Changing energies ightarrow multiplicity of particles from a BH
 - ightharpoonup They differ for different spins ightharpoonup in different numbers of dimensions the relative ratios of scalars:fermions:gauge bosons will be different.

May change the BH event signature

Decay Spectrum: $\frac{dN_{i,\omega,l,m}}{d\omega dt} = \frac{1}{2\pi} \frac{\gamma_{i,\omega,l,m}}{\exp(\omega R_H) \mp 1}$

- $\gamma_{i,\omega,l,m}$ Grey-body factors
- -i: particle type
- l,m : angular momentum quantum numbers

Energy Spectrum for black body, s=0, $s=\frac{1}{2}$, and s=1 Particles in 4-Dimension

- ▶ It seems no one has done full numerical solutions in (4+n) dimensions.
- Chirs Harris has done numerical solutions in (4+n) dimensions for fermions and scalars. He is working on vector bosons.

Grey Body Factor (Chris Harris)

The numerical solution for the grey-body in (4+n) D

The region up to about $\omega R_H \sim 0.25$ is important

Above this the exponential behaviour $dN/d\omega\sim\gamma\exp\left(-\omega R_H\right)$ kills the overall spectrum pretty quickly.

Summary

O The semi-classical conditions $M_{BH}>>M_p\;,\;M_{BH}>>T_H\;,\;\text{<Multiplicity>}\gg 1$ start breaking down towards the end of the BH decay.

Majority of the <u>low multiplicity</u> events, especially those in <u>higher dimensions</u>, tends toward the regime where the semi-classical approximation fails.

It would be difficult to distinguish higher dimensional BH from each other!

- More study needs to be done!
- The <u>numerical solution</u> for s=0 and $s=\frac{1}{2}$ greybody factor is done.
- \bigcirc Work on s=1 grey body factor is still in *progress*.
 - ▶ use the <u>correct ratios</u> of different particle types emitted with different numbers of dimensions.
 - it will be possible to emit each particle species with the *correct spectrum* (*grey body effect*).