<u> \</u>

0.5 setgray.25 0.5 setgray.5 0.5 setgray.75

Baryon Resonances

Eberhard Klempt

Helmholtz-Institute, University of Bonn

- Introduction
- Regge trajectories
- A mass formula for baryon resonances
- Chiral symmetry restoration ?
- Missing resonances
- Outlook: new data from Crystal Barrel

WHY BARYON SPECTROSCOPY ?

- Spectroscopy is a powerful tool to study internal dynamics
- 1. Balmer formula \longrightarrow Hydrogen atom
- 2. Magic numbers \downarrow Tensor forces in nuclear physics
- 3. Existance of $\Omega \longrightarrow$ Triumph of SU(3)
- 4. No 'ionized' protons ----- Confinement
- 5. $c\bar{c}$ and $b\bar{b}$ families \longrightarrow One-gluon exchange linear confinement
- Baryons have $N_{\rm F}=N_{\rm C}$
- 1. True non-abelian system test of QCD related ideas
- 2. Rich dynamics of three-body system \longrightarrow Insights beyond meson physics
- 3. Truely complicated Intelectually and experimentally demanding
- **BUT:** Baryons are not fundamental, meson physics is "better".

ω

0.0

Grenoble, 2003, March 27th

Experimental Status

The Particle Data Group lists:

Total	L oN	*	* *	* * *	* * * *	Singlet	Decuplet	Octet
22	ı	N	0	ယ	11			z
22		6	S	ω	7			
26	G	œ	œ	4	6		M	Μ
18	ı	ယ	<u>د</u>	СЛ	9	Ν		Λ
1	œ	ယ	N	4	N		[I]	[I]
4	4	0	N	-	-		Ω	

- ~ 100 resonances
- ~ 85 known spin and parity
- ullet ~ 50 established baryons
- of known spin parity
- K. Hagiwara *et al.*, Phys. Rev.
 D 66, 010001 (2002).

Grenoble, 2003, March 27th

Theoretical models and results

- Assume quarks move in an effective confinement potential generated by a very fast colour exchange between quarks (antisymmetrising the total wave function)
- Assume the light quarks acquire effective mass by spontanous symmetry
- breaking
- Assume residual interactions
- One gluon exchange

relativized quark model,

S. Capstick and N. Isgur, Phys. Rev. D 34 (1986) 2809.

OGE fixed to HFS (N- Δ)

 $\vec{L}\cdot\vec{S}$ large, in contrast to data

Set to zero

(comp. by $\vec{L}\cdot\vec{S}$ from Thomas prec. ?)

Goldstone (pion) exchange

Take spin-spin, neglect tensor interactions,

L. Y. Glozman, W. Plessas, K. Varga and R. F. Wagenbrunn,

Phys. Rev. D 58, 094030 (1998).

Instanton interactions

Relativistic quark model with instanton-induced forces

U. Löring, B. C. Metsch and H. R. Petry,

Eur. Phys. J. A 10 (2001) 395-446, 447-486

Solve equation of motion

(using wave functions of the harmonic oscillator)

U. Löring, B. Metsch, H. Petry and others

U. Löring, B. Metsch, H. Petry and others

Many problems still unsolved:

ightarrow What is the relation between quark models

and structure functions?

- ightarrow Which model is right ?
- \rightarrow Is it true that one interaction dominates ?
- ightarrow Decay properties of resonances
- \rightarrow Missing resonances
- ightarrow Low mass of Roper, $\Delta_{3/2^+}(1600)$...
- ightarrow Low mass of negative-parity Δ^{*} 's at 1950 MeV

Here:

Try to get at physics from phenomenolgy

The Baryon Wave Function

 $|qqq\rangle = |colour\rangle_A$. |space, spin, flavour $>_{S}$ O(6) SU(6)

wave function must be symmetric. We now construct wave functions. quarks. The colour wave function is antisymmetric, hence the space-spin-flavour The total wave function must be antisymmetric w.r.t. the exchange of any two

SU(6)

Baryons (with 3 quarks):

3 flavours x 2 spins.

 $\mathbf{6}\otimes \ \mathbf{6}\otimes \ \mathbf{6}=\mathbf{56}\oplus \ \mathbf{70}_{\mathbf{M}}\oplus \ \mathbf{70}_{\mathbf{M}}\oplus \ \mathbf{20}$

50 00 70 ${}^{4}10 \oplus$ $^{2}10 \ \oplus \ ^{4}8 \ \oplus \ \\$ 22 80 $\mathbf{^{2}8} \oplus \mathbf{^{2}1}$

 $\mathbf{^{2}8} \oplus \mathbf{^{4}1}$

20

||

the 10 multiplet is symmetric, the 1 antisymmetric in flavour space. $(8_{\rm M})$ have a mixed flavour symmetry, The singlet contains The 70-plet contains The 56-plet contains S^{*}*S S^{, *}N S^{*}S S,∗∕ S,∗∕ with spin 1/2 with spin 1/2 with spin 3/2 with spin 1/2 with spin 1/2 and with spin 3/2

Mesons with ${\bf J}={\bf L}+{\bf S}$ lie on a Regge trajectory with a slope of 1.142 GeV 2 .

 $\Delta^{*,s}$ with L even and $\mathbf{J}=\mathbf{L}+\mathbf{3}/2$ have the same slope as mesons.

Spin-orbit couplings

16

Grenoble, 2003, March 27th

1950 Mev		$\Delta_{5/2}+$	$\Delta_{3/2}+$		U	N	7/1	
		> -	> .		D	כ	1 /0	
1950 MeV	4 N $_{7/2+}$ (1990)	3 N $_{5/2+}$ (2000)	2 N $_{3/2}+$ (1900)	$N_{1/2}+$	0	2	3/2	
1866 MeV		$N_{5/2}+$	$N_{3/2}+$		0	2	1/2	70
1950 MeV	$^{d}\Delta_{7/2+}$ (1950)	$^{c}\Delta_{5/2^{+}}(1905)$	$^{b}\Delta_{3/2}$ + (1920)	$^a\Delta_{1/2+}$ (1910)	0	2	3/2	
1779 MeV		N $_{5/2+}$ (1680)	N $_{3/2+}$ (1720)		0	2	1/2	56
2223 MeV		$\Delta_{3/2^-}$	$\Delta_{1/2^-}$ (2150)		2	1	1/2	
2223 MeV	N $_{5/2}-$	$N_3/2-$	$N_{1/2}-$		2	Н	3/2	
2151 MeV		$^{2}\mathrm{N}_{3/2^{-}}$ (2080)	1 N $_{1/2-}$ (2090)		2	⊣	1/2	70
1950 MeV	$^{c}\Delta_{5/2-}$ (1930)	$^{b}\Delta_{3/2}$ – (1940)	$^a\Delta_{1/2}$ – (1900)		1	н	3/2	
1779 MeV		N $_{3/2}-$	$N_{1/2}-$		1	⊣	1/2	56
1631 MeV		$\Delta_{3/2^-}$ (1700)	$\Delta_{1/2^-}$ (1620)		0	H	1/2	
1631 MeV	N $_{5/2-}$ (1675)	N $_{3/2}-$ (1700)	N $_{1/2}-$ (1650)		0	1	3/2	
1530 MeV		N $_{3/2}-$ (1520)	N $_{1/2}-$ (1535)		0	1	1/2	70
1232 MeV		$\Delta_{3/2^+}$ (1920)	$\Delta_{3/2+}$ (1600)	$\Delta_{3/2^+}$ (1232)	0,1,2,3	0	3/2	
939 MeV	1 N $_{1/2+}$ (2100)	N $_{1/2+}$ (1710)	N $_{1/2+}$ (1440)	N $_{1/2+}$ (939)	0,1,2,3	0	1/2	56
Mass (2)		* and Δ^*	structure of N [*]	Multiplet s	N	L	S	D

 Δ^* 's with odd ${f L}$ and ${f J}={f L}+1/2$ fall on the same trajectory.

N^{*}'s and Δ 's with S=3/2

 ${f N}^*$'s with intrinsic spin 3/2 fall on the same trajectory.

N*'s (S=3/2) and Δ 's (S=1/2,3/2)

The lowest Δ^* (with spin 1/2 and 3/2) and the N*'s with intrinsic spin 3/2 and J = L + 3/2 fall on the same Regge trajectory.

What is about N^* with intrinsic spin $\mathrm{S}=1/2$?

The N* masses (with intrinsic spin S = 1/2) lie below the standard Regge trajectory. They are smaller by about 0.6 GeV² for N* in the 56plet, and by 0.3 GeV² for N* in the 70-plet.

Table

Radial
excitations
Q
f bary
0
n reso
nances;
ij
red
two
Saphir
resonan
ces.

$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Baryon N _{1/2+} (939) N _{1/2+} (1440) N _{1/2+} (1710) N _{1/2+} (2100) $\Delta_{1/2-}$ (1620) $\Delta_{1/2-}$ (1900) $\Delta_{1/2-}$ (2150) N _{1/2-} (1530)	$\delta M^2 (GeV^2)$ 1 · 1.18 2 · 1.02 3 · 1.18 1 · 0.99 2 · 1.00	Baryon $\Delta_{3/2+} (1232)$ $\Delta_{3/2+} (1600)$ $\Delta_{3/2-} (1920)$ $\Delta_{3/2-} (1700)$ $\Delta_{3/2-} (1940)$ $N_{3/2-} (1520)$	δM^2 (Ge 1 · 1.0 2 · 1.0 1 · 0.8
$\begin{array}{llllllllllllllllllllllllllllllllllll$	$\Delta_{1/2-}(2150)$	$2 \cdot 1.00$	-3/2 (2010)	ŀ
$\begin{array}{llllllllllllllllllllllllllllllllllll$	$N_{1/2^-}(1530)$		$N_{3/2^-}(1520)$	
$\begin{array}{ c c c c c c c } \textbf{N}_{1/2-}(2090) & 2 \cdot 1.01 & \textbf{N}_{3/2-}(20 \\ \hline & & & & & & & \\ \Lambda_{1/2+}(1115) & & & & & & \\ \Lambda_{1/2+}(1600) & 1 \cdot 1.24 & & & & & \\ \Lambda_{1/2+}(1810) & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ \Lambda_{1/2+}(1810) & & & & & & & \\ \end{array}$	N $_{1/2^-}$ (1897)	$1 \cdot 1.26$	N $_{3/2}$ – (1895)	⊥ •
$ \begin{array}{ c c c c c c c c } \Lambda_{1/2+}(1115) & & & & & & & & & & \\ \Lambda_{1/2+}(1600) & & & & & & & & & & \\ \Lambda_{1/2+}(1810) & & & & & & & & & & & \\ \Lambda_{1/2+}(1810) & & & & & & & & & & & \\ \end{array} $	$N_{1/2^-}(2090)$	$2 \cdot 1.01$	$N_{3/2^-}(2080)$	$2 \cdot 1$
$ \begin{array}{ c c c c c c c c } \Lambda_{1/2+} (1600) & 1 \cdot 1.24 & \Sigma_{1/2+} (15) \\ \Lambda_{1/2+} (1810) & 2 \cdot 0.98 & \Sigma_{1/2+} (18) \end{array} $	$\Lambda_{1/2^+}(1115)$		$\Sigma_{1/2^+}(1193)$	
$\Lambda_{1/2+}(1810)$ $2 \cdot 0.98$ $\Sigma_{1/2+}(18)$	$\Lambda_{1/2^+}(1600)$	$1 \cdot 1.24$	$\Sigma_{1/2^+}(1560)$	<u> </u>
	$\Lambda_{1/2^+}(1810)$	$2 \cdot 0.98$	$\Sigma_{1/2^+}(1880)$	2 .

 \Rightarrow Instanton interactions are important.

functions.

5. There is a mass shift \propto to $(q_1q_2-q_2q_1)(\uparrow\downarrow-\downarrow\uparrow)$ in baryonic wave

4. \mathbb{N}^* 's and Δ^* 's can be grouped into supermultiplets with defined L and S but different J. ightarrow No significant $\mathbf{L}\cdot\mathbf{S}$ splitting.

 \Rightarrow No significant genuine spin-spin interaction.

3. Δ^* resonances with S=1/2 and S=3/2 are on the same Regge trajectory.

 \Rightarrow No significant genuine octet-decuplet splitting.

2. m N and Δ resonances with spin m S=3/2 lie on a common Regge trajectory.

 $a=1.142\ GeV^2$ \Rightarrow Effective quark - diquark interaction !

1. The slope of the Regge trajectory for mesons is the same as for Δ^*

Observations and conclusions

6. Daughter trajectories have the same slope and an intercept which is higher by $a=1.142~GeV^2$ per n, both for mesons and baryons.

 \Rightarrow Effective quark - diquark interaction !

7. For L larger than 3,

N*'s have J = L + 1/2 ;

 Δ^* 's have J = L + 3/2 \Rightarrow Spin and flavor are locked !

These observations can be condensed into a baryon mass formula

A mass formula for baryon resonances E. Klempt, Phys. Rev. C 66

(2002) 058201

$$\mathbf{M^2} = \mathbf{M^2_\Delta} + \frac{\mathbf{n_s}}{3} \cdot \mathbf{M^2_s} + \mathbf{a} \cdot (\mathbf{L} + \mathbf{N}) - \mathbf{s_i} \cdot \mathbf{I_{sym}}$$

 \succ

where

$$\mathbf{M}^{\mathbf{2}}_{\mathbf{s}} = (\mathbf{M}^{\mathbf{2}}_{\boldsymbol{\Omega}} - \mathbf{M}^{\mathbf{2}}_{\boldsymbol{\Delta}}), \qquad \mathbf{s}_{i} = \left(\mathbf{M}^{\mathbf{2}}_{\boldsymbol{\Delta}} - \mathbf{M}^{\mathbf{2}}_{N}\right),$$

 $\mathbf{N}=\mathbf{n}_{\rho}+\mathbf{n}_{\lambda},$ baryon. a = 1.142/GeV 2 Regge slope (from meson spectrum). ${
m L} = {
m l}_
ho + {
m l}_\lambda,$ M_N, M_Δ, M_Ω are input parameters (PDG), n_s number of strange quarks in a L+2N harmonic-oscillator band N.

which is antisymmetric in spin and flavor: L_{sym} is the fraction of the wave function (normalized to the nucleon wave function)

$I_{sym} =$	I _{sym} =	$I_{sym} =$	$I_{sym} =$
0	3/2	1/2	<u> </u>
otherwise.	for S=1/2 and	for S=1/2 and	for S=1/2 and
	singlet;	octet in 70-plet;	octet in 56-plet;

0.65	62	219		1950	1900	0	$(70,^48)_2$	* *	$N_{3/2^+}(1900)$
3.28	53	176	120-140	1779	1683	0	$(56,^28)_2$	* * *	$N_{5/2+}(1680)$
2.22	53	176	100-200	1779	1700	0	$(56,^28)_2$	****	$N_{3/2+}(1720)$
1.04	46	139	140-180	1631	1678	0	$(70,^{4}8)_{1}$	* * * *	$N_{5/2^-}(1675)$
2.25	46	139	50-150	1631	1700	0	$(70,^{4}8)_{1}$	***	$N_{3/2^-}(1700)$
0.4	46	139	145-190	1631	1660	0	$(70,^{4}8)_{1}$	****	$N_{1/2}^{}-(1650)$
0.03	41	114	110-135	1530	1523	0	$(70,^28)_1$	****	$N_{3/2^-}(1520)$
0.04	41	114	100-250	1530	1538	0	$(70,^28)_1$	****	$N_{1/2^{-}}(1535)$
0.12	70	251		2076	2100	N	$(56,^28)_0$	*	$^{1}\mathrm{N}_{1/2^{+}}(2100)$
1.69	53	176	50-250	1779	1710	N	$(56,^28)_0$	***	$N_{1/2+}(1710)$
0.53	37	87	250-450	1423	1450	<u> </u>	$(56,^28)_0$	***	$N_{1/2^+}(1440)$
•	ı	ı			939	0	$(56,^28)_0$	* * * *	$N_{1/2+}(939)$
χ^2	۹	$\Gamma_{ m m}$	Γ_{e}	M_m	Me	z	D_L	Status	Baryon

S^{, *}N

	$N_{13/2+}(2700)$	$N_{11/2^-}(2600)$	$N_{9/2+}(2220)$	$N_{9/2-}(2250)$	$N_{7/2}$ -(2190)	$N_{5/2^{-}}(2200)$	$N_{3/2^-}(2080)$	$N_{1/2^-}(2090)$	$N_{7/2+}(1990)$	$N_{5/2+}(2000)$	Baryon
	* *	* * *	* * *	* * *	****	* *	* *	*	* *	* *	Status
	$(56,^28)_6$	$(70,^28)_5$	$(56,^28)_4$	$(70,^48)_3$	$(70,^28)_3$	$(70,^28)_3$	$(70,^28)_1$	$(70,^28)_1$	$(70,^48)_2$	$(70,^48)_2$	D_{L}
	0	0	0	0	0	0	2	N	0	0	z
	2700	2650	2245	2240	2150	2220	2080	2090	1990	2000	M_e
	2781	2629	2334	2223	2151	2151	2151	2151	1950	1950	M_m
dof:	•	500-800	320-550	290-470	350-550	•	•	·	•	·	Γ_{e}
21	427	389	315	287	269	269	269	269	219	219	$\Gamma_{\rm m}$
$\sum \chi^2$:	111	102	84	78	74	74	74	74	62	62	۹
17.53	0.53	0.04	1.12	0.05	0	0.87	0.92	0.68	0.42	0.65	χ^2

0	62	219	290-350	1950	1950	0	$(56,^4 10)_2$	* **	$\Delta_{7/2^+}(1950)$
0.79	62	219	280-440	1950	1895	0	$({f 56},{}^{f 4}{f 10})_{f 2}$	* * *	$oldsymbol{\Delta}_{5/2^+}(1905)$
0.06	62	219	150-300	1950	1935	0	$({f 56},{}^{f 4}{f 10})_{f 2}$	* *	$\Delta_{3/2^+}(1920)$
0.79	62	219	190-270	1950	1895	0	$({f 56},^{f 4}{f 10})_{f 2}$	****	$oldsymbol{\Delta}_{1/2^+}(1910)$
0.01	62	219	250-450	1950	1945	<u> </u>	$(56,^4 10)_1$	* *	$\Delta_{5/2^-}(1930)$
0.03	62	219	·	1950	1940	_	$({f 56},^{f 4}{f 10})_{f 1}$	*	$\Delta_{3/2^-}(1940)$
0.65	62	219	140-240	1950	1900	-	$(56,^410)_1$	* *	$oldsymbol{\Delta}_{1/2^-}(1900)$
3.74	46	139	200-400	1631	1720	0	$(70,^2 10)_1$	***	$\Delta_{3/2^-}(1700)$
0.09	46	139	120-180	1631	1645	0	$(70,^2 10)_1$	* * * *	$oldsymbol{\Delta}_{1/2^-}(1620)$
6.69	46	139		1631	1750	<u>د</u>	$(70,^2 10)_0$	*	$\Delta_{1/2^+}(1750)$
0.02	46	139	250-450	1631	1625	<u>د</u>	$(56,^4 10)_0$	* *	$\Delta_{3/2^+}(1600)$
I	ı	ı		1232	1232	0	$(56,^410)_0$	****	$oldsymbol{\Delta}_{3/2^+}(1232)$
χ2	σ	$\Gamma_{ m m}$	Γ_{e}	M_m	Me	z	D_L	Status	Baryon

 \triangleright

22.31	$\sum \chi^2$:	21	dof:						
0.23	118	455		2893	2950	0	$(56,^410)_6$	* *	$\Delta_{15/2^+}(2950)$
1.47	118	455	•	2893	2750	-	$(56,^410)_5$	* *	$\Delta_{13/2^{-}}(2750)$
0.53	92	348	300-500	2467	2400	0	$({f 56},^{f 4}{f 10})_{f 4}$	****	$\Delta_{11/2+}(2420)$
3.3	92	348	•	2467	2300	0	$({f 56},^{f 4}{f 10})_{f 4}$	* *	$oldsymbol{\Delta}_{9/2^+}(2300)$
0.7	92	348	•	2467	2390	0	$({f 56},{}^{f 4}{f 10})_{f 4}$	*	$\Delta_{7/2+}(2390)$
0.53	92	348		2467	2400	<u> </u>	$(56,^410)_3$	* *	$\Delta_{9/2^-}(2400)$
1.62	92	348		2467	2350	0	$({f 56},^{f 4}{f 10})_{f 1}$	*	$\Delta_{5/2^{-}}(2350)$
0.09	78	287		2223	2200	<u> </u>	$(70,^2 10)_2$	* *	$^{1}\Delta_{5/2^{+}}(2000)$
0.09	78	287		2223	2200	0	$(70,^210)_3$	*	$\Delta_{7/2^{-}}(2200)$
0.88	78	287		2223	2150	N	$(70,^2 10)_1$	*	$\Delta_{1/2^{-}}(2150)$
χ^{2}	σ	$\Gamma_{ m m}$	Γ_{e}	M_m	M_e	z	D_{L}	Status	Baryon

<u>ω</u>

Baryon	Status	D_{L}	z	Me	M_m	$\Gamma_{ m e}$	$\Gamma_{\rm m}$	٩	χ_2
$\Sigma_{1/2^+}(1193)$	****	$(56,^28)_0$	0	1193	1144			30	2.67
$\Sigma_{3/2^+}(1385)$	* **	$(56,^410)_0$	0	1384	1394	ı	ı	30	0.11
$\Sigma(1480)$	*								
$\Sigma(1560)$	* *	$(56,^28)_0$	-	1560	1565	ı	32	31	0.03
$\Sigma_{1/2^+}(1660)$	* * * *	$(70,^28)_0$	-	1660	1664	40-200	57	33	0.01
$\Sigma_{1/2^+}(1770)$	*	$(70,^210)_0$	-	1770	1757	ı	80	36	0.13
$\Sigma_{1/2^+}(1880)$	* *	$(56,^28)_0$	2	1880	1895	•	115	42	0.13
$\Sigma_{1/2^{-}}(1620)$	* *	$(70,^28)_1$	0	1620	1664		57	33 3	1.78
$\Sigma_{3/2^{-}}(1580)$	* *								
$\Sigma_{3/2^{-}}(1670)$	***	$(70,^48)_1$	0	1675	1664	40-80	57	3 3 3	0.11
$\mathbf{\Sigma}(1690)$	* *	$(70,^210)_1$	0	1690	1757	·	80	36	3.46
$\Sigma_{1/2^{-}}(1750)$	* * *	$(70, ^48)_1$	0	1765	1757	60-160	80	36	0.05
$\Sigma_{5/2^-}(1775)$	***	$(70, {}^48)_1$	0	1775	1757	105-135	80	36	0.25

M

Baryon	Status	D_{L}	z	Me	M_m	Γ_{e}	$\Gamma_{ m m}$	٩	×2
$\Sigma_{1/2^{-}}(2000)$	*	$(70,^28)_1$	-	2000	1977		135	45	0.26
$\Sigma_{3/2^{-}}(1940)$	***	$(70,^28)_1$	-	1925	1977	150-300	135	45	1.34
$\Sigma_{3/2^+}(1840)$	*	$(56,^28)_0$	2	1840	1895	I	115	42	1.71
$\Sigma_{5/2^+}(1915)$	* * *	$(56,^28)_0$	2	1918	1895	80-160	115	42	0.3
$^{1}\Sigma_{3/2^{+}}(2080)$	* *	$(56,^410)_0$	2	2080	2056	ı	155	49	0.24
$^{1}\Sigma_{5/2^{+}}(2070)$	*	$(56,^410)_0$	N	2070	2058	·	155	49	0.06
$^{1}\Sigma_{7/2^{+}}(2030)$	* * *	$(56,^410)_0$	2	2033	2056	150-200	155	49	0.22
$\mathbf{\Sigma}(2250)$	* * *	$(70,^28)_3$	0	2245	2248	60-150	203	59	0
$\Sigma_{7/2^{-}}(2100)$	*	$(70,^28)_3$	0	2100	2248	•	203	59	6.29
$\mathbf{\Sigma}(2455)$	* *	$(56,^28)_4$	0	2455	2424	•	247	69	0.2
$\Sigma(2620)$	* *	$(70,^28)_5$	0	2620	2708	I	318	85	1.07
$\Sigma(3000)$	*	$(56,^28)_6$	0	3000	2857	•	355	94	2.31
$\Sigma(3170)$	*	$(70,^28)_7$	0	3170	3102	•	416	108	0.4
						dof:	24	$\sum \chi^2$:	23.13

ယ္သ

Baryon	Status	D_{L}	z	M_e	M_m	Γ_{e}	$\Gamma_{ m m}$	٩	×2
$\Lambda_{1/2^+}(1115)$	* * *	$(56,^28)_0$	0	1116	1144		·	30	0.87
$\Lambda_{1/2^+}(1600)$	* *	$(56,^28)_0$	-	1630	1565	50-250	32	31	4.4
$\Lambda_{1/2^+}(1810)$	* **	$(56,^28)_0$	2	1800	1895	50-250	115	42	5.12
$\Lambda_{1/2^{-}}(1405)$	* * * *	$(70,^21)_1$	0	1407	1460	50	6	30	3.12
$\Lambda_{3/2^-}(1520)$	* * * *	$(70,^21)_1$	0	1520	1460	16	6	30	4
$\Lambda_{1/2^{-}}(1670)$	* * * *	$(70,^28)_1$	0	1670	1664	25-50	57	33	0.03
$\Lambda_{3/2^{-}}(1690)$	* * * *	$(70,^28)_1$	0	1690	1664	50-70	57	ယ္သ	0.62
$\Lambda_{1/2^{-}}(1800)$	* * *	$(70,^48)_1$	0	1785	1757	200-400	80	36	0.6
$\Lambda_{5/2^-}(1830)$	* * * *	$(70,^{4}8)_{1}$	0	1820	1757	60-110	80	36	3.06
$\Lambda_{3/2^+}(1890)$	* * * *	$(56,^28)_2$	0	1880	1895	60-200	115	42	0.13
$\boxed{ \Lambda_{5/2^+}(1820) }$	***	$(56,^28)_2$	0	1820	1895	70-90	115	42	3.19

31.34	$\sum \chi^2$:	18	dof:						
0.2	76	279		2551	2585	0	$(70,^48)_2$	* *	$\Lambda(2585)$
-	69	247	100-250	2424	2355	0	$(56,^28)_4$	* * *	$\Lambda_{9/2+}(2350)$
1.7	59	203	•	2248	2325	N	$(70,^2 8)_1$	*	$\Lambda_{3/2^-}(2325)$
0	51	166	100-250	2101	2100	0	$(70,^21)_3$	* * * *	$\Lambda_{7/2^-}(2100)$
0.54	49	155		2056	2020	0	$(70,^{4}8)_{2}$	*	$\Lambda_{7/2+}(2020)$
1.45	49	155	150-250	2056	2115	0	$(70,^{4}8)_{2}$	***	$\Lambda_{5/2+}(2110)$
1.31	49	155	·	2056	2000	0	$(70,^{4}8)_{2}$	*	$\Lambda(2000)$
χ^{2}	σ	$\Gamma_{\rm m}$	Γ_{e}	M_m	Me	z	D_L	Status	Baryon

	E(2500)	三(2370)	E(2250)	E (2120)	E (2030)	三 (1950)	$\Xi_{3/2^{-}}(1820)$	E(1690)	Ξ(1620)	$\Xi_{3/2+}(1530)$	$\Xi_{1/2+}(1320)$	Baryon
	*	* *	* *	*	***	* **	* **	***	*	***	****	Status
	$(56,^28)_4$	$(70,^28)_3$	$(56,^4 10)_2$	$(56,^{4}10)_{2}$	$(56,^28)_2$	$(56,^28)_2$	$(70,^28)_1$	$(56,^28)_0$		$(56,^410)_0$	$(56,^28)_0$	D_L
	0	0	0	0	0	0	0	<u> </u>		0	0	z
	2500	2370	2250	2120	2025	1950	1823	1690	1620	1532	1315	M_{e}
	2510	2340	2157	2157	2004	2004	1787	1696		1540	1317	M_m
dof:	•		•	·	15-35	40-80	14-39	<30		9	·	$\Gamma_{ m e}$
10	224	182	136	136	86	86	43	21			·	$\Gamma_{\rm m}$
$\sum \chi^2$:	64	55	45	45	39	39	32	30		30	30	٩
8.86	0.02	0.3	4.27	0.68	0.29	1.92	1.27	0.04		0.07	0	χ^2

[I]

5	
\sim	

	$\Omega(2470)$	$\Omega(2380)$	$\Omega(2250)$	$\Omega_{3/2^+}(1672)$	Baryon
	* *	* *	* * * *	* * *	Status
	$(70,^2 10)_0$	•	$(56,^410)_2$	$(56,^410)_0$	D_{L}
	<u> </u>	•	0	0	z
	2474	2380	2252	1672	M_e
	2495		2254	ı	M_m
dof:	39-105	•	37-73		Γ_{e}
2	137	•	77	ı	$\Gamma_{\rm m}$
$\sum \chi^2$:	46		36		σ
	1				

- $\chi^2 = 105$ for 97 data points.
- All but 4 observed states are predicted:
- \Rightarrow No evidence for (baryonic) hybrids !
- \Rightarrow No evidence for pentaquarks !
- Where are the missing resonances ?

Symmetry of wave functions

Spatial

spin_s

flavour $_f$

	MA Mixed antisymmetric	MS Mixed symmetric	S Symmetric,	
Fround state	$\mathbf{S}=\mathbf{1/2},$	$\mathbf{S}=\mathbf{1/2},$	${f S}={f 3}/{f 2}$	
 	$\mathbf{s_1} + \mathbf{s_2} = 0$	$\mathbf{s_1} + \mathbf{s_2} = 1$		

56	$^{2}\mathrm{N_{1/2^{+}}(938)}$	$\mathbf{S}\otimes(\mathbf{MS}_{\mathbf{s}}\otimes\mathbf{MS}_{\mathbf{f}}\oplus\mathbf{MA}_{\mathbf{s}}\otimes\mathbf{MA}_{\mathbf{f}})$
56	$^{4}\Delta_{3/2^{+}}(1232)$	$S \otimes S_{S} \otimes S_{f}$

L = 1 states :

${}^4\mathrm{N}_{1/2^-}(165)$	$\mathbf{MS}\otimes \mathbf{S_s}\otimes \mathbf{MS_f} + \mathbf{MA}\otimes \mathbf{S_s}\otimes \mathbf{MA_f}$	$(\mathbf{MS}\otimes\mathbf{MA_s}+\mathbf{MA}\otimes\mathbf{MS_s})\otimes\mathbf{MA_f}$	$(\mathbf{MA}\otimes\mathbf{MA_s}-\mathbf{MS}\otimes\mathbf{MS_s})\otimes\mathbf{MS_f}$ +	$(\mathbf{MS}\otimes\mathbf{MS_s}+\mathbf{MA}\otimes\mathbf{MA_s})\otimes\mathbf{S_f}$
) ${}^4\mathrm{N}_{3/2^-}(1700) {}^4\mathrm{N}_{5/2^-}(1675)$ 70		$^2\mathrm{N_{1/2^-}(1535)~^2N_{3/2^-}(1520)}$ 70		$^2\Delta_{1/2^-}(1620)^2\Delta_{3/2^-}(1700)$ 70

Symmetries determine pattern of states!

Spatial Wavefunctions

under permutations ! We need to construct spatial wave functions with defined symmetry properties

Jacobean coordinates:

$$\mathbf{r_1}-\mathbf{r_2}$$

 $\mathbf{r_1}+\mathbf{r_2}-2\mathbf{r_3}$

 $\mathbf{r_1} + \mathbf{r_2} + \mathbf{r_3}$

- Two relevant separable motions
- System is bound \Rightarrow
- Two harmonic oscillators ho, λ

Grenob
,
2003,
March
27th

ယ	ω	ω	ω	ω	ယ	ω	ω	N	Ν	N	N	N	Ν	N	<u> </u>	_	0	z
ω	ယ	ယ	ယ	15	15	7	7	_	-	—	ω	Сı	G	СЛ	ယ	ယ	-	n
0	-	0	<u> </u>	-	Ν	0	ယ	0	0				0	N	0		0	l_1
<u> </u>	0	_	0	N	_	ယ	0	0	0	_	_	_	N	0	_	0	0	l_2
0	0	<u>د</u>	–	0	0	0	0	0	–	0	0	0	0	0	0	0	0	n_1
_	-	0	0	0	0	0	0	-	0	0	0	0	0	0	0	0	0	n_2
_	<u> </u>			1,2,3	1,2,3	ω	ယ	0	0	0	-	N	N	N	-	<u> </u>	0	L
56 / <mark>20</mark>								21 / 12							6/6		1/1	$\sum n$
				4	4	4	4	4	4	4	4	4	4	4	4	4	4	z
	0	M		4 1	4	4	49	4 5	4 5	4 9	4 5	4 5	4 25	4 21	4 21	4 9	4 9	N N
λ, ρ	Only e	$\sum n =$	Harm	4 1 0	4 1 0	4 1 0	491	4 5 0	4 5 2	491	4 5 0	4 5 2	4 25 2	4 21 1	4 21 3	4 9 0	4 9 4	N n l_1
λ, ho excita	Only excited	$\sum n =$ total	Harm osc v	4 1 0 0	4 1 0 0	4 1 0 0	4 9 1 1	4 5 0 2	4 5 2 0	4 9 1 1	4 5 0 2	4 5 2 0	4 25 2 2	4 21 1 3	4 21 3 1	4 9 0 4	4 9 4 0	N n $l_1 \ l_2$
λ, ho excitations	Only excited oscil	$\sum n =$ total numb	Harm osc wf as $ angle$	4 1 0 0 1	4 1 0 0 0	4 1 0 0 2	4 9 1 1 0	4 5 0 2 0	4 5 2 0 0	4 9 1 1 1	4 5 0 2 1	4 5 2 0 1	4 25 2 2 0	4 21 1 3 0	4 21 3 1 0	4 9 0 4 0	4 9 4 0 0	N n l_1 l_2 n_1
λ, ho excitations ${ m N}=2$	Only excited oscillator:	$\sum n =$ total number of r	Harm osc wf as λ, ho ex	4 1 0 0 1 1	4 1 0 0 0 2	4 1 0 0 2 0	4 9 1 1 0 1	4 5 0 2 0 1	4 5 2 0 0 1	4 9 1 1 1 0	4 5 0 2 1 0	4 5 2 0 1 0	4 25 2 2 0 0	4 21 1 3 0 0	4 21 3 1 0 0	4 9 0 4 0 0	4 9 4 0 0 0	N n l_1 l_2 n_1 n_2
λ, ho excitations ${ m N}=4, { m L}=2$	Only excited oscillator: N in blue	$\sum n =$ total number of realization	Harm osc wf as λ, ho excitations.	4 1 0 0 1 1 0	4 1 0 0 0 2 0	4 1 0 0 2 0 0	4 9 1 1 0 1 0,1,2	4 5 0 2 0 1 2	4 5 2 0 0 1 2	4 9 1 1 1 0 0,1,2	4 5 0 2 1 0 2	4 5 2 0 1 0 2	4 25 2 2 0 0 1,2-4	4 21 1 3 0 0 2,3,4	4 21 3 1 0 0 2,3,4	4 9 0 4 0 0 4	4 9 4 0 0 0 4	N n l_1 l_2 n_1 n_2 L

Example: L=2 and N=1

Two oscillators, $l_{\rho}, l_{\lambda}, n_{\rho}, n_{\lambda}$. Contributing configurations:

These wave functions are needed to construct wave funtions of defined symmetry

under exchange of two quarks.

Grenoble, 2003	
, March 27t	

The initial state after excitation of a baryon is given by

Single quark excitation hypothesis:

 $rac{1}{\sqrt{2}}\mid 0>\pm rac{1}{\sqrt{2}}\mid 8>$

$$\begin{split} |\mathbf{S0}\rangle &= +\sqrt{\frac{1}{6}} \cdot \frac{1}{\sqrt{2}} (|\mathbf{0}\rangle + |\mathbf{8}\rangle) + \sqrt{\frac{7}{18}} \cdot \frac{1}{\sqrt{2}} (|2\rangle + |6\rangle) - \sqrt{\frac{4}{9}} |4\rangle \\ |\mathbf{MS0}\rangle &= +\sqrt{\frac{1}{12}} \cdot \frac{1}{\sqrt{2}} (|0\rangle + |\mathbf{8}\rangle) + \sqrt{\frac{1}{36}} \cdot \frac{1}{\sqrt{2}} (|2\rangle + |6\rangle) + \sqrt{\frac{7}{9}} |4\rangle \\ |\mathbf{MS0}\rangle &= +\sqrt{\frac{1}{4}} \cdot \frac{1}{\sqrt{2}} (|0\rangle + |\mathbf{8}\rangle) - \sqrt{\frac{7}{12}} \cdot \frac{1}{\sqrt{2}} (|2\rangle + |6\rangle) + \sqrt{\frac{7}{6}} |4\rangle \\ |\mathbf{MS1}\rangle &= +\sqrt{\frac{3}{10}} \cdot \frac{1}{\sqrt{2}} (|0\rangle - |\mathbf{8}\rangle) - \sqrt{\frac{7}{10}} \cdot \frac{1}{\sqrt{2}} (|2\rangle - |6\rangle) \\ |\mathbf{MA0}\rangle &= +\sqrt{\frac{7}{10}} \cdot \frac{1}{\sqrt{2}} (|0\rangle - |\mathbf{8}\rangle) + \sqrt{\frac{3}{10}} \cdot \frac{1}{\sqrt{2}} (|2\rangle - |6\rangle) \\ |\mathbf{MA1}\rangle &= -\sqrt{\frac{21}{25}} \cdot \frac{1}{\sqrt{2}} (|1\rangle + |7\rangle) - \sqrt{\frac{21}{25}} \cdot \frac{1}{\sqrt{2}} (|3\rangle + |5\rangle) \\ |\mathbf{MA2}\rangle &= +\sqrt{\frac{3}{10}} \cdot \frac{1}{\sqrt{2}} (|1\rangle - |7\rangle) + \sqrt{\frac{7}{10}} \cdot \frac{1}{\sqrt{2}} (|3\rangle - |5\rangle) \\ |\mathbf{A0}\rangle &= -\sqrt{\frac{7}{10}} \cdot \frac{1}{\sqrt{2}} (|1\rangle - |7\rangle) + \sqrt{\frac{3}{10}} \cdot \frac{1}{\sqrt{2}} (|3\rangle - |5\rangle) \end{split}$$

States of defined permutational symmetry:

4 V

4 >

Consequences:

symmetric wave functions ($\mathrm{MS1}$ and $\mathrm{MS2}$) are coherently excited Resonances with symmetric wave functions (S0, ${
m S1}$ and ${
m MS0}$) and with mixed

$$\frac{1}{\sqrt{2}}(|0\rangle + |8\rangle) = \sqrt{\frac{1}{6}}|S0\rangle + \sqrt{\frac{7}{12}}|S1\rangle + \frac{1}{2}|MS0\rangle,$$
$$\frac{1}{\sqrt{2}}(|0\rangle - |8\rangle) = \sqrt{\frac{3}{10}}|MS1\rangle + \sqrt{\frac{7}{10}}|MS2\rangle.$$

- quantum number ($\delta\phi\cdot\delta\mathbf{n}\sim\hbar$). Baryon resonances are wave packets with defined phase but uncertain in
- Large reduction in the number of states
- Resonances with antisymmetric and mixed antisymmetric wave functions are not excited
- Only relevant quantum numbers are $\mathbf{L}=\mathbf{l}_{
 ho}+\mathbf{l}_{\lambda}$ and $\mathbf{N}=\mathbf{n}_{
 ho}+\mathbf{n}_{\lambda}.$
- These are used in the baryon mass formula.

115 (2002) in the high-mass nucleon spectrum? L. Y. Glozman, Phys. Lett. B 541, Is there evidence for chiral symmetry restoration

Quarks are (nearly) massless; there is chiral symmetry.

At low energies, chiral symmetry is broken, e.g. by instanton-induced interactions:

- Quarks acquire mass
- The masses of pion and of the lowest scalar meson $f_0(650)$ are different
- The mass of the N $_{1/2+}$ (938) and of the N $_{1/2-}$ (1535) are different.

Chiral symmetry might be restored

- at large temperatures
- and high densities

$\mathbf{J}=rac{15}{2}$	${f J}=rac{13}{2}$	$\mathbf{J}=rac{11}{2}$	${f J}={9\over 2}$	$\mathbf{J}=rac{7}{2}$	J 5 2	J 2 ³	$\mathbf{J}=rac{1}{2}$
œ	7	6	ъ	4	ယ	Ν	-
$N_{15/2}+$	$N_{13/2}+(2700)$	$N_{11/2}+$	$N_{9/2+}(2220)$	$N_{7/2+}(1990)$	$N_{5/2+}(2000)$	$N_{3/2}^{}+(1900)$	$N_{1/2^+}(2100)$
N _{15/2} -	$N_{13/2}$	$N_{11/2^-}(2600)$	$N_{9/2^{-}}(2250)$	$N_{7/2^-}(2190)$	$N_{5/2^-}(2200)$	$N_{3/2^-}(2080)$	$N_{1/2^{-}}(2090)$
Ъ	g	Ļ	Ð	٩	C	σ	a
${f \Delta_{15/2^+}(2950)}$	$\Delta_{13/2}+$	$m{\Delta}_{11/2^+}(2420)$	$oldsymbol{\Delta_{9/2+}(2300)}$	$oldsymbol{\Delta_{7/2+}(1950)}$	$oldsymbol{\Delta}_{5/2^+}(1905)$	$oldsymbol{\Delta}_{3/2^+}(1920)$	$oldsymbol{\Delta}_{1/2^+}(1910)$
$\Delta_{15/2^{-1}}$	$\Delta_{13/2^{-}}(2750)$	$\Delta_{11/2}$	$oldsymbol{\Delta_{9/2^-}(2400)}$	$oldsymbol{\Delta_{7/2^-}(2200)}$	$oldsymbol{\Delta}_{5/2^-}(1930)$	$\Delta_{3/2^-}(1940)$	${f \Delta_{1/2^-}(1900)}$

Flavor	$\Delta_{5/2}$ L=3		Possik	•			There
wave fun $ ightarrow { m s}$	₂ (1930) , S=1/2		ole L,S cor	_{13/2} - (275	_{9/2} -(2400	_{5/2} -(1930	are three
ction: symmetric spacial wave fun	$\Delta_{9/2}$ – (2400) L=5, S=1/2	Unlikely	nfigurations:	0)))	high-mass ∆ sta
;; spin wave func ction must be sy On	$\Delta_{13/2}$ – (2750) L=7, S=1/2						ates with negativ
tion: symmetric. mmetric ! e unit of radial ex	$\Delta_{5/2}$ – (1930) L=1, S=3/2						e parity:
xcitation required	$\Delta_{9/2^-}$ (2400) L=3, S=3/2	Likely					
	$\Delta_{13/2}$ - (2750) L=5, S=3/2						

High Δ states with negative parity

 \triangleright_*

Z *

E. Klempt, Phys Lett. B, in print, arXiv:hep-ph/0212241.

axis. For mass degenerate states, negative-parity states are drawn below those with Schematic diagram of the energy levels of Δ^* (left) and N^{*} (right) resonances. The positive parity. Observed states: dark lines, expected ones: green lines. vertical axis is linear in squared baryon masses, mass values are given on the right

Data from the Crystal Barrel experiment at ELSA

- WARNINGS:
- All results are preliminary !

 $\gamma p + p\pi^0$

 $+ p\eta$ γp

	I		Preliminary	solution	-
_	J ^P	Mass	Width	Fraction	PDG
2 3	2 <mark>3</mark> 2	pprox 2175	300 - 400	$\approx 50 \%$	
2 <mark> </mark> 3	2 <mark>3</mark> 2	≈ 1915	≈ 330	$pprox \ 13 \ \%$	$\Delta(1940) {\sf D}_{33}$ (*)
2 3	<mark>5</mark> –	pprox 1965	300 - 400	\approx 7 %	$\Delta(1930) { t D}_{35}$ (***)
N Ω	$\frac{1}{2}^+$	pprox 1940	≈ 300	pprox 16~%	$\Delta(1910)$ P $_{31}$ (****)
2 3	$\frac{3}{2}$ +	pprox 2390	300 - 400	pprox 14 %	
⊳ ເ ພ	⊳l∽ +	≈ 1945	300 - 400	$\approx 11 \%$	$\Delta(1905){\sf F}_{35}$ (****)

 $\gamma p \to p \pi^0 \eta$

Summary

- Meson and baryon resonances lie on Regge trajectories
- Mesonic and baryonic Regge trajectories have a common slope
- Baryons with pairs of quarks which are antisymmetric in spin and flavor undergo a mass shift due to instanton-induced interactions
- All observed baryon resonances can be understood as single quark excitations. defined symmetries. They form form coherent superpositions of harmonic oscillator eigenstates of
- Crystal Barrel at ELSA has yielded first promissing data !

Strong interactions of massless quarks:

Chiral symmetry

However:

- Strong fluctuations of gluon fields
- QCD allows solutions with vortices (topological charge, winding number)
- Quarks can be bound to these vortices (zero modes)
- Quarks can flip spin under change of topological charge
- Chirality of quarks is not conserved
- Chiral symmetry is spontaneously broken
- Glodstone boson acquire mass

Symmetry breaking :

			induced		spontaneous	
			magnetic field	districts	Weiss-	Magnetism
$m_u \sim 120$ MeV	$m_d \sim$ 7 MeV	$m_u \sim 4 \; \text{MeV}$	Higgs field	quarks	Constituent	QCD

Instantons on the lattice

Grenoble, 2003, March 27th

(a)

<u>(</u>)

Action density (left) and topological charge (right) as functions of space and time before cooling (a,b) and after cooling (c-f).