Production des Quarkonia Lourds

dans les Collisions de Haute Énergie

Luminita Mihaila * Université de Hambourg Mars 2004

Contenu

- La QCD dans la limite non relativiste
- Production inclusive du J/Ψ dans les collisions photon-photon.
- Conclusions

^{*}en collaboration avec M.Klasen, B.Kniehl and M.Steinhauser

Motivations

- Quarkonium: état lié (int. forte) de q et \bar{q} de même saveur $c\bar{c}$ -charmonium- $J/\Psi(^{3}S_{1}), \chi_{cJ}(^{3}P_{J}), \eta_{c}(^{1}S_{0}), h_{c}(^{1}P_{1});$ $b\bar{b}$ -bottomonium- $\Upsilon(nS), \chi_{bJ}(^{3}P_{J}), \cdots$
- Pourquoi les quarkonia lourds?
 - les systèmmes le plus simples pour l'interaction forte
 - informations sur les processus à haute et basse énergie
 opportunité de tester un grand secteur du MS
- Spectroscopie: $\Psi, \Psi', \chi_c, \Upsilon(nS), \chi_b$ depuis 1975

Nouvelles résonances (2003)	non observées
$\eta_c ightarrow K_s K \pi$ $$ BES, CLEO III	h_c
$\eta_c^\prime o K_s K \pi$ $$ BaBar, BES, CLEO III	h_c'
$\Upsilon(1^3D_2) o \chi_{bJ}({}^3\!P_J)\gamma~~$ CLEO, LQCD	$\eta_b(!), \ \ h_b$
X(3870) BELLE, CDF, D0	

Désintégrations

– mesures de précision pour $\Gamma_{had}, \Gamma_{ll}, \Gamma_{EM}$:

des tests pour la QCD et pour les modèles de potentiels

$$\frac{B(\Psi(2S) \rightarrow Had.)}{B(J/\Psi(1S) \rightarrow Had)} \simeq 15 \pm 2\%$$
 non confirmé par BES

– recherche des glueballs: $J/\Psi
ightarrow \gamma gg
ightarrow \gamma G$

G exclu par LEP, CLEO, mais dans l'attente de CLEOc

• La CDQ dans la limite non relativiste (NRQCD)

G. Bodwin, E. Braaten and G. Lepage '96

(LD) P. Cho and A. Leibovich '96, (LSLD) A. Petrelli et al '98

- séparation des processus à différentes échelles d'énergie
- existence des états d'octet de couleur (COM) dans la nature
- explique la production du J/Ψ et du Ψ' auprès du Tevatron(Run I), du LEP2(DELPHI) et du RHIC (PHENIX)
- surestime les taux de production du J/Ψ à grand z à HERA
- surestime la polarisation du J/Ψ et du Ψ' au Tevatron

• La NRQCD mise à l'épreuve

- la production de paires de J/Ψ dans l'annihilation e^+e^- auprès de BELLE.
- la production associée de J/Ψ et des mesons D dans l'annihilation e^+e^- auprès de BELLE (en attendant BaBar).
- la polarisation du J/Ψ et du Ψ' auprès du Tevatron RunII.
- l'étude des processus de désintégration du meson B
- calculs de précision à LSDL en α_s ou tenant compte des corrections relativistes
- l'elaboration des règles precises pour hiérarchiser les contributions provenant d'états octet de couleur

• Les résultats de la NRQCD et du CSM pour la hadroproduction du $J/\Psi,$ $pp \to J/\Psi + X \text{ auprès du Tevatron}$

NRQCD - Théorie Effective du Champ

- on impose un *cutoff UV*, $\Lambda \simeq$ M, au \mathcal{L}_{QCD}
- on supprime tous les degrées relativistes de la théorie.
- les effets relativistes sont decrits par nouvelles interactions locales dans le ${\cal L}$
- les effets relativistes sont contenus exclusivement dans les constantes de couplage renormalisées
- les processsus relativistes et non relativistes sont factorisés.

$$\begin{aligned} \mathcal{L}_{\mathrm{NRQCD}} &= \mathcal{L}_{\mathrm{light}} + \mathcal{L}_{\mathrm{heavy}} + \delta \mathcal{L} \\ \mathcal{L}_{\mathrm{heavy}} &= \psi^{\dagger} (\mathrm{i} \mathrm{D}_{\mathrm{t}} + \frac{\vec{\mathrm{D}}^2}{2\mathrm{M}}) \psi + \chi^{\dagger} (\mathrm{i} \mathrm{D}_{\mathrm{t}} + \frac{\vec{\mathrm{D}}^2}{2\mathrm{M}}) \chi \end{aligned}$$

les spinors de Dirac \rightarrow separés dans 2 spinors de Pauli

• les effets relativistes :

$$\delta \mathcal{L} = \delta \mathcal{L}_{\text{bilin}} + \delta \mathcal{L}_{4-\text{fermion}} + \dots + \delta \mathcal{L}_{2n-\text{fermion}}$$
$$\delta \mathcal{L}_{\text{bilin}}^{1} = c_{1} \frac{g}{M^{2}} (\psi^{\dagger} (\vec{D} \cdot \vec{E} - \vec{E} \cdot \vec{D}) \psi + cc)$$

• la production et l'annihilation des $Q\bar{Q}$ décrites par

$$\begin{split} \delta \mathcal{L}_{4-\text{fermion}} &= \sum_{n} \frac{f_{n}(\Lambda)}{M^{d_{n}-4}} \mathcal{O}_{n}(\Lambda), \\ \mathcal{O}[{}^{1}S_{0}^{[1]}] &= \psi^{\dagger} \chi \chi^{\dagger} \psi \end{split}$$

 factorisation topologique: separation d'une diagramme entre une partie à courte distance et une partie à longue distance

 La formule de factorisation tenant compte des Opérateurs de la NRQCD (OME):

$$\mathrm{d}\sigma = \sum_n \mathrm{d}\hat{\sigma}(Q\bar{Q}[n] + X) \langle O^H[n] \rangle.$$

- l'Universalité: OME sont indépendants du processus dur
- Les opérateurs sont des paramètres phénoménologiques.
- La Decomposition en États de Fock

$$\begin{aligned} |J/\Psi \rangle &= \Psi^{J/\Psi} |c\bar{c}[{}^{3}S_{1}^{[1]}] \rangle + \Psi^{J/\Psi}_{g} |c\bar{c}[{}^{3}P_{J}^{[8]}] + g \rangle \\ &+ \Psi^{J/\Psi}_{g} |c\bar{c}[{}^{1}S_{0}^{[8]}] + g \rangle + \Psi^{J/\Psi}_{gg} |c\bar{c}[{}^{3}S_{1}^{[8]}] + gg \rangle + \dots \end{aligned}$$

transition électrique (ET): $\Delta L = \pm 1, \Delta S = 0, \sim v^2$ transition magnétique (MT): $\Delta L = 0, \Delta S = \pm 1, \sim v^4$

- Processus $\gamma\gamma$
 - i) direct:
- $\gamma\gamma \rightarrow J/\Psi + X, X = g; \gamma$

 $gg(q\bar{q}) \rightarrow J/\Psi + X, X = g; \gamma$

- ii) single-resolved: $g(q)\gamma \rightarrow J/\Psi + X, \ X = g, q; \gamma$
- iii) double-resolved:

- le canal *single-resolved* est dominant.
- les processus partoniques sont : i) $\gamma\gamma \rightarrow c\bar{c}[n] + \gamma$, $\gamma\gamma \rightarrow c\bar{c}[n] + g$, $\gamma\gamma \rightarrow c\bar{c}[n] + g$, $\eta\gamma \rightarrow$
 - $$\begin{split} \text{ii) } &g\gamma & \rightarrow c\bar{c}[n_8] + \gamma \\ &g(q)\gamma & \rightarrow c\bar{c}[n_{1,8}] + g(q), \quad n_{1,8} = {}^3S_1, {}^3\!P_J, {}^1\!S_0 \\ \text{iii) } &g(q)g(\bar{q}) \rightarrow c\bar{c}[n_{1,8}] + \gamma \\ &g(q)g(\bar{q}) \rightarrow c\bar{c}[n_{1,8}] + g \end{split}$$
- Les valeurs des opérateurs ont été calculées (Braaten et al '98) en utilisant les données prises par CDF auprés du Tevatron Runl.

Comparaison avec les données prises par DELPHI

- données expérimentales pour $e^+e^- \rightarrow e^+e^- + J/\Psi + X$ $N(J/\Psi \rightarrow \mu^+\mu^-) = 36 \pm 7$ événements la section efficace totale $\sigma(J/\Psi + X) = 45.3 \pm 18.8$ pb
- le photon final prompt est exclu par les coupures expérimentales

(Chapkine et al., DIS, Hadron, Photon 2001) (Preliminary)

- les calculs à LD dépendent fortement des échelles de factorisation et de renormalisation → besoin des calculs à LSLD
- bandes d'erreurs en variant les échelles, la m_c, les OMEs, les PDFs du photon.

- processus hadroniques: $pp \to J/\Psi + X$ partoniques: $g(q)g(q) \to c\bar{c}[n_{1,8}] + X$
- distribution de la section efficace inclusive (pour la production du J/Ψ) en p_T (auprés du RHIC).
- incertitudes théoriques en variant $m_c, \mu, M_a, < O^{J/\Psi}[n] >$.

Corrections réelles du $\gamma\gamma \to c\bar{c}[n]+g$

- divergences IR de l'opérateur(NRQCD) et celles

du processus dur (QCD) s'annulent mutuellement.

• Diagrammes de Feynman pour $\gamma\gamma \to c \overline{c}[n] + gg$

(e)

Analyse numérique $\gamma\gamma \rightarrow c \bar{c} [n] + g$ à LSLD

- distribution en p_T de la section efficace différentiele $d^2\sigma/dy dp_T$ à y = 0 (auprès de TESLA).
- á grandes p_T les corrections réelles sont dominantes (plusieurs canaux activés par lémission d'un gluon réel).
- á p_T moyennes les corrections virtuelles compensant celles réelles deviennent importantes

Analyse numérique $\gamma\gamma \rightarrow c\bar{c}[n] + g$ à LSLD

- dépendence en y de la $d^2\sigma/dy dp_T$ pour $p_T = 5$ Gev
- à impulsions moyennes $p_T \simeq 5$ Gev, la production associée du J/Ψ et d'une paire de quarks legers est atténuée.
- la symétrie autour de y = 0 est gardée, mais les pics sont aplatis.

- La NRQCD est une thórie consistente comprenant les etats de Singlet de Couleur et d'Octet de Couleur. De plus, toutes les divergences s'annulent mutuellement.
- Les prédictions de la NRQCD sont en accord avec les données expérimentales du DELPHI (LEP2) et PHENIX (RHIC), alors que celles du CSM sont d'un ordre de grandeur plus petites.
- Premier calcul pour les processus $2 \to 2$ dans le cadre de la NRQCD, *i.e* production directe $\gamma\gamma \to J/\Psi + jet$
- Le facteur $K_{NLO} \equiv \sigma_{NLO} / \sigma_{Born} \simeq 6$ confirme que les corrections en α_S et celles relativistes sont significatives pour charmonia.