The transverse-momentum distribution of the Higgs boson at hadron colliders

> giuseppe bozzi lpsc, grenoble

grenoble, 23/09/2004

INFN

in collaboration with S.Catani, D.deFlorian, M.Grazzini

The Higgs mechanism

- Standard Model: SU(2)xU(1) gauge theory $m_l = m_B = 0$
- "Simple-minded" insertion of mass terms in the Lagrangian both gauge invariance and renormalizability spoiled

(m=0) global simmetry

SSE: Goldstone bosons

```
<sup>(</sup>(m≠0) local simmetry
```

Local SSB (Higgs mechanism) provides masses to W⁺,W⁻,Z⁰ and leptons through trilinear Yukawa couplings.

'Remnant': neutral, scalar, massive boson H

Bounds on m_H

- Direct search at LEP : $m_H > 114.4 GeV$
- EW fits: $m_H < 251 GeV$

(Higgs loop contributions to EW observables)

Hadronic cross sections in perturbative QCD

- **h** \mathbf{h}_2 = initial state hadrons (with momenta $\mathbf{p}_1, \mathbf{p}_2$)
- $f_{p}f_{p} = parton distribution functions$
- **C** = coefficient functions (partonic *splitting*)
 - = <u>perturbatively computed</u> partonic event
 - = final state particle(s)
 - = resummation of soft radiation from incoming partons

H^o production at hadron colliders: 9 0000000000 W,Z g g fusion : H^o WW, ZZ fusion : Ho W,Z q a g 22222222222 🗲 W.Z q - Ho tt fusion : W,Z 9 00000000000000 Нo ā W, Z bremsstrahlung 🔺 T $\sigma(pp \rightarrow H+X)$ 107 √s = 14 TeV $m_t = 175 \text{ GeV}$ gg 🛶 H 10⁶ 10 CTEQ4M events for 10⁵ pb⁻ 10⁵ σ (pb) laa 10⁴ 10 10³ 10⁻² Htt 10⁻³ 10² M. Spira et al. gg,q**q→** Hbb NLO QCD 10⁻⁴ 1000 200 400 600 800 0 M_H (GeV)

Possibilities of Higgs signal at hadron colliders

Tevatron Run II

LHC-Atlas

Why studying p_T distribution?

- Detector's <u>resolution</u>, <u>kinematical acceptance</u> and <u>efficiency</u>, (and, thus, event modeling) $\Rightarrow p_T$ -dependent
- The knowledge of the shape of the p_T spectrum can *dictate analyses and triggering strategies*
- Useful to enhance *signal/background* ratio (γ , leptons channels): application of p_T -cuts in the process of event-selection

(Davatz, Dissertori, Dittmar, Grazzini, Pauss hep-ph/04022218)

The p_T-spectrum

 $M_{\rm H}$

• most of the events

()

- multiple emission of *soft gluons*
- $\alpha_{s}^{n} \rightarrow \alpha_{s}^{n} \log^{m}(M_{H}/q_{T})$ con (1 < m < 2n)
- calculation techniques:
 - *parton showering*(MonteCarlo: Pythia, Herwig)
 - resummation

(Parisi,Petronzio;1979)
(Dokshitzer,Diakonov,Troian;1980)
(Collins,Soper,Sterman;1985)

- perturbative expansion in $\alpha_{s}(M_{H}^{2}) \Rightarrow \underline{reliable}$
- LO=O(α³_s) known from the eighties
 (Ellis,Hinchliffe,Soldate, van der Bij; 88)
- NLO= O(α⁴_s) evaluated first numerically,later analitically: (deFlorian, Grazzini, Kunzst;99) (Glosser, Schmidt; 02)

(Ravindran,Smith,vanNeerven;02)

Fixed-order calculation

- Importance of radiative corrections (K=NLO/LO~60%)
- K almost constant
- Both LO and NLO increase at low p_T
- Scale dependence reduced going from LO to NLO
- Scale variation at LO (~35%) highly underestimates NLO radiative corrections

Divergence at low p_T

- In general, the *n*-th perturbative order includes terms of type $(\alpha^{n}_{s}/p_{T}^{2}) \log^{m}(M_{H}/p_{T})$ $\Rightarrow divergence!$
- Compensation of positive (m=2n-1) and negative (m=2n-2) terms
 ⇒non-physical peak at NLO
- It is necessary an *all-orders resummation* of logarithmic contributions to obtain reliable predictions

Resummation: the main idea

Fixed Order (rel.ord.: $\alpha_s L^{2}$)

 $\frac{\Sigma_1^{\infty} + \Sigma_1^{\infty} + \Sigma_1^{\infty} + \dots}{\text{LL class NLL class NLL class}}$

 $\sim \exp\left(\Sigma_{n}C_{n}^{\prime}\alpha_{s}^{n}L^{n+1} + \Sigma_{n}C_{n}^{\prime\prime\prime}\alpha_{s}^{n}L^{n} + \Sigma_{n}C_{n}^{\prime\prime\prime\prime}\alpha_{s}^{n}L^{n+1}\right)$

Resummation (rel.ord: 1/L)

Some formulas.....

• Resummation formula

$$\begin{aligned} \frac{d\sigma^{(\text{res.})}}{dq_T^2 dQ^2} &= \sum_{a,b,c} \int_0^1 dx_1 \int_0^1 dx_2 \int_0^\infty db \frac{b}{2} J_0(bq_T) \, \sigma_{c\bar{c}}^{(LO)} \, \delta(Q^2 - x_1 x_2 s) \\ & \cdot \left(f_{a/h_1} \otimes C_{ca} \right) \left(x_1, \frac{b_0^2}{b^2} \right) \left(f_{b/h_2} \otimes C_{\bar{c}b} \right) \left(x_2, \frac{b_0^2}{b^2} \right) S_c(Q, b) \end{aligned}$$

- One usually works in b-space (b=impact parameter= p_T -conjugate variable), where <u>multiple emission effects</u> <u>do factorize</u> and where p_T -conservation is evident
- Sudakov factor

$$S_c(Q,b) = \exp\left\{-\int_{b_0^2/b^2}^{Q^2} \frac{dq^2}{q^2} \left[A_c(\alpha_S(q^2)) \ln \frac{Q^2}{q^2} + B_c(\alpha_S(q^2))\right]\right\}$$

 A₁,A₂,B₁ *universal* and already known (Kodaira,Trentadue;1982) (Catani,D'Emilio,Trentadue;1985)
 B₂ recently evaluated for gg->H process (deFlorian,Grazzini;2000) The "matching" procedure $(d\sigma/dp_T)_{tot} = (d\sigma/dp_T)_{res} + (d\sigma/dp_T)_{fix} - (d\sigma/dp_T)_{asym}$

- $(d\sigma/dp_T)_{res}$ = resummation
- $(d\sigma/dp_T)_{T}$ = fixed order
- $(d\sigma/dp_T)_{nym}$ = expansion of resummation formula to the same order

Our calculation

- Includes the <u>most complete information</u> available up to now:
 - Resummation at NNLL order at low p_T
 - Perturbative calculation at NLO at high p_T
 - Matching at $O(a_s^4)$
- <u>Improve the implementation formalism</u> allowing a very precise *matching* at low p_T

Results for gg-->HX at NLL+LO

giuboz, Catani, deFlorian, Grazzini; PLB 564 (2003), 65-72 hep-ph/0302104

- Relevant effect of resummation for $p_T < 100 \text{ GeV}$
- Scale dependence: 10% around the peak

LO, NLO, NLL+LO comparison

- At intermediate p_T the distribution increases, going from LO to NLO and, subsequently going from NLO to NLL+LO
- ⇒ importance of resummation at intermediate p_T with respect to higher perturbative order!

Results for gg-->HX at NNLL+NLO

- At $p_T \sim 50$ GeV the resummation effect increases the result by 40% with respect to NLO
- Peak slightly lower than NLL+LO, tail slightly higher (explanation: $\sigma_{tot}(NNLO) \sim \sigma_{tot}(NLO)$)
- Scale dependence: 8% around the peak \Rightarrow lower than NLL+LO

Predictions for different values of M_H

- Results normalized to respective total cross sections
- At higher M_H, the peak shifts at higher p_T values
- In general, increasing M_H tail becomes more important and the peak is lowered

Non-perturbative effects

- p_T-distribution receives important non-perturbative contributions at low p_T (high b) region
- Several different recipes to include them

(Davies,Webber,Stirling;1985) (Ladinsky,Yuan;1994) (Brock,Landry,Nadolsky,Yuan;2002) (Kulesza,Stirling;2003)

 In our case, deviations from purely perturbative result are at most 8% for p_T>10 GeV

Parton showering vs. resummation

- 1. Include LL, universal 1. Include all logs, both and indipendent from process under study
- 2. Allows exact treatment of branching kinematics
- 3. Needs matrix elements corrections at high p_T
- 4. Apart from MC@NLO, retains LO normalization and scale dependence

- universal and process dependent
- 2. Useful only for processes inclusive over final state
- 3. The *matching* allows a prediction over all the spectrum
- 4. Retains normalization and scale dependence of higher perturbative order

Comparison with others p_T-spectra (Balazs, Grazzini, Huston, Kulesza, Puljak, hep-ph/0403052)

- PYTHIA,HERWIG normalized to LO
- Low/intermediate p_T (p_T<100 GeV): predictions are consistent
- High p_T: HERWIG not supplied with NLO matrix elements
- Peak position: 12-14 GeV for all curves
- Are the discrepancies experimentally resolvable?

Conclusions and outlook

- Importance of resummation at low and intermediate \underline{p}_T
- <u>Matching</u> with fixed order at $O(\alpha^4)$
- <u>Stability</u> of the main features of the distribution with respect to perturbative uncertainties (*scales, higher orders*)
- <u>Good control</u> over non-perturbative contributions
- Extension to other processes (DY, SUSY, Heavy Ions (?), ...)