Physique de précision avec le détecteur ATLAS au LHC

Pascal Pralavorio (pralavor@cppm.in2p3.fr)

CPPM–Univ. de la Méditerranée (Marseille, FRANCE)

- 1. Introduction
- 2. QCD à \sqrt{s} =14 TeV
- 3. Physique du W, Z
- 4. Physique du top
- 5. Conclusions

Introduction (1)

Un peu d'histoire des collisions proton-proton ...

□ 1981: Spp̄S (CERN) avec √s= 546 GeV, 0.02pb⁻¹

1983: Découverte des bosons W et Z

→ 20^e anniversaire: Phys.Rept.403-404 (2004), 107 ⊕ Eur.Phys.J.C34 (2004), 33

□ **1987:** Tevatron (FNAL) avec √s= 1.8 TeV, 0.07pb⁻¹

1995: Découverte du quark top

➔ 10^e anniversaire : http://www.fnal.gov/pub/news05/TopTurnsTen.html

- □ 2007: LHC (CERN) avec √s= 14 TeV, 10-100 pb⁻¹?
 - ≥2007: Découverte très rapide ? (Ex: Z'→ee)
 - Découverte rapide ? (Ex: SUSY)

Complémentarité avec les

- Découverte plus lente ? (Ex: Higgs léger) | mesures de précision du MS

➔ "L'Histoire est la science des choses qui ne se répètent pas" (Valery)

Introduction (2)

• LHC: collisions $p\overline{p}$ à \sqrt{s} =14 TeV à partir de 2007

• 2 phases: 10³³cm⁻¹s⁻² (initiale, 2008-2009), 10³⁴cm⁻¹s⁻² (finale, >2009)

Grande statistique à la luminosité initiale:

- Coupures sévères pour sélectionner les evts
- Peu d'evts d'empilement
- □ Les mesures des paramètres du MS seront dominées par les erreurs systématiques
 - du Monte Carlo (MC): radiations dans les états initial et final, PDF, ...
 - du détecteur, du LHC

Processus du Modèle Standard (MS)	σ (nb)	Evts / 10 fb ⁻¹
Minimum bias	10 ⁸	~ 10 ¹⁵
bb	5 10 ⁵	~ 10 ¹²
W ightarrow ev	15	~ 10 ⁸
$\mathbf{Z} \rightarrow \mathbf{e^+} \ \mathbf{e^-}$	1.5	~ 10 ⁷
tt	0.8	~ 10 ⁷
Dibosons	0.2	~ 10 ⁶

Introduction (3)

□ Origine des erreurs systématiques (détecteur, LHC)

- Echelle E, p des leptons
- Echelle d'énergie des jets
- → Utilisation des tests en faisceau (1998-2004)
- → Amélioration avec la calibration in situ
 (Z→II, Z+jets, W→jj dans les evts tt)
- Etiquetage des b (*b-tagging*)
- Vérification des performances avec les données (evts tt très purs)
- Luminosité
- Expériences dédiées (LUCID) + utilisation des W

Le détecteur ATLAS (1)

Quelques chiffres

- L ~ 44 m, Ø ~ 22 m
- 7000 tonnes
- 2000 personnes

Détecteur interne

- Pixels, pistes Si et TRT
- · Champs magnétique de 2T (solénoïdal)
- Couverture $|\eta| < 2.5$

Calorimétrie

- EM à argon liquide (LAr) jusqu'à $|\eta| < 3.2$
- Had. (Tuiles, LAr, à l'avant) jusqu'à $|\eta| < 4.9$

Spectromètre à muons

- Champs magnétique de 4T (toroïdal)
- \cdot Couverture jusqu'à $|\eta|$ < 2.7

- B Pour $|\eta| < 2.5$ (région de précision):
 - Echelle E, p des leptons à < 0.1 %
- T

 S

 Echelle d'énergie des jets à 1%

• *b-tagging*: $\varepsilon_b \approx 60\%$, $r_{uds} \approx 100$, $r_c \approx 10$

e, jets~Tevatron/3, *b-tagging* ~Tevatron

Le détecteur ATLAS (2)

Le détecteur prend place dans la caverne ...

... où les premiers evts avec des muons cosmiques ont été observés

ATLAS sera prêt pour la prise de données en 2007

QCD à *I*s=14 TeV (1)

Comprendre les evts *minimum bias* (Ex. : Nb de traces chargées N_{ch})

ATL-PHYS-PUB-2005-007

QCD à √s=14 TeV (2)

Comprendre les evts sous jacents (région "Transverse")

QCD à √s=14 TeV (3)

(*Ge*V²) **Contraindre la fonction de struture du proton (PDF)** M = 10 TeV• W sonde les gluons à petit x, $Q^2 = M_w^2$ ğ 10 M = 1 TeVrevatron LHC 103 • Exemple: Le spectre du $W^{+}(\rightarrow e^{+}v)$ est sensible au 104 - 100 GeV 103 paramètre de forme du gluon λ (xg(x)=x^{- λ}) 102 M=10 GeV fixed HERA 101 target \rightarrow L'erreur sur λ est réduite de 40 % 100 10° 107 10 10.0 10 10-3 10-1 10 X ATL-PHYS-CONF-2005-008 da/dy Br(W⇒ev) Zeus PDF LHC 1 jour 0.2 0.2 $Q^2 = M_w^2$ $Q^2 = M_w^2$ Inclusion des 0.15 données "ATLAS" "ATLAS data dans les fits PDF_{0.1} 0.1 (CTEQ6L1) globaux 0.05 0.05 λ=-0.187-0.046 $\lambda = -0 \ 155 \in 0 \ 030$ 0 4 5 5 Inl lηl

Pascal Pralavorio (CPPM) LHC parton kinematics

Masse du W (1)

□ *M_w* est un paramètre fondamental du MS lié aux masses du top, du Higgs

Masse du W (2)

2000

1600

1200

200

A Méthode de mesure (W \rightarrow ev, μ v):

$$M_T^W = \sqrt{2 p_T^l p_T^v (1 - \cos \Delta \phi_{lv})}$$

Estimé avec le recul du W

- Lepton isolé P_T>25 GeV
- E_{τ}^{miss} >25 GeV
- → 30M evts/10 fb⁻¹ • Pas de jet à haut pT: E_{τ} <20 GeV
- Recul du W < 20 GeV
- \rightarrow Sensibilité à M_W sur la partie descendante du spectre
- → Ajuste le MC avec le Z⁰
- \rightarrow Minimise χ^2 (données-MC) où M_W varie entre [80-81] GeV par pas de 1 MeV: 2 MeV de précision statistique

25000

15000

Masse du W (3)

□ Erreurs systématiques <u>expérimentales</u> et *théoriques* sur *M*_W (MeV)

Source	CDF,runlb PRD64,052001	ATLAS 10 fb ⁻¹	Remarques	*Z réduit les syst. sur M_W
Echelle E,p des leptons	75	<10*	Linéarité Calo EM 0.02%, B à 0.1%, align. 1mm, #X _o du dét. interne à 1%	<u>Ex.</u> : Corrélation entre les sect. eff. du Z et du W
<u>PDF</u>	15	10*		1 1 1 1 1 1 1 1 1 1
Déc. Radiative	11	<10	Amélioration théorique	≥ ^{15.8}
Largeur du W	10	7	∆Γ _w =30 MeV (Run II)	15.6
Modèle de recul	37	5*	Suit la stat. des evts Z	15.5
₽ ₇ [₩]	15	5*	p _r ^z comme référence	15.3
Bruit de fond	5	5		
Résolution E	25	5*		σ_{7} (nb)
Pile-up, UE	-	??*	Mesuré dans les evts Z	→ Déduit la cinématique
Stat⊕syst	113	< 25	W→e v	du W avec celle du Z
TOTAL	89	< 20	W→e v + W→ μ v	

Triples couplages de jauge (1)

□ Interaction entre 3 bosons de jauge → Triples couplage de jauge (TGC)

- Test direct de la structure non-Abelienne du MS
- TGC du MS (WWγ,WWZ) découverts au LEP
- → Modifient la production de paire de boson de jauge

Etudes au NLO et sélection ajustée pour les décroissances leptoniques du Z/W: Vraisemblance sur p_T^v → sensibilité aux TGC anormaux

Triples couplages de jauge (2)

General Section WZ, Wγ avec 30 fb⁻¹

- ≥1000 WZ (Wγ) sélectionnés avec S/B = 17 (2)
- 5 paramètres pour les contributions anormales (nulles dans le MS), $f(\sqrt{s})$ pour g_1^z, κ_s et $f(\hat{s})$ pour λ_s
- Les mesures, dominées par les erreurs stat., améliorent les résultats du LEP/Tevatron par ~2-10

General Test Series 100 February Series 100

- 12 paramètres, f(ŝ^{3/2}) ou f(ŝ^{5/2}) -
- Mesures complètement dominées par les erreurs stat., améliorent les limites du LEP/Tevatron par ~10³-10⁵

h $\frac{Z,\gamma}{2,4}$

ATL-PHYS-2003-022/023

7 10-7

Quadruples couplages de jauge dans la production Wγγ avec 100 fb⁻¹

Production et décroissance du top

Physique du top au LHC

- Large programme accessible rapidement (10 fb⁻¹)
- Points forts: grande statistique, reconstruction complète de l'événement
- Complémentarité avec le *single top* sur la connaissance du vertex tWb

Sélection des événements tt

- Topologie de l'evt remarquable: t et t centraux (|η|<2.5) et dos-à-dos dans le plan transverse (leptons isolés)
- Energie manquante (p_T^{miss})
- Avec les performances attendues du *b-tagging*
 - \rightarrow bruit de fond non tt (W+jets, bb, ...) négligeable

Dileptonique

- + 2 leptons isolés de charges opposés, P_T>20 GeV, $|\eta|{<}2.5$
- p_T^{miss}>40 GeV
- 2 jets *b-tagged* avec p_T>20 GeV

ε(sig) ~ 6%, 20k evts / 10 fb⁻¹ S/B~6 (tt→τ+X)

Semileptonique

- 1 Lepton isolé $\mathsf{P}_{\!\mathsf{T}}{>}20~\text{GeV}$, $|\eta|{<}2.5$
- p_T^{miss}>20 GeV
- \geq 4 jets (cone Δ R=0.4) avec p_T>40 GeV
- 2 jets *b-tagged*

ε(sig) ~ 3%, 80k evts / 10 fb⁻¹ S/B~12 (tt→τ+X)

➔ Applique cette sélection pour les études sur la masse et la polarisation

Reconstruction des événements tt

□ Canal dileptonique (2 v)

- Ensemble de 6 équations ($\Sigma p_T = 0$, $M_{lv} = M_W$, $M_{lvb} = M_t$) à 6 inconnues (p_v et p_v)
- Si >= 1 solution (98%) \rightarrow probabilité de la solution avec p_T (t, \bar{t} , v, \bar{v}) connu

ε(rec) ~80%, pureté (solution correcte) ~ 65%

□ Canal semileptonique (1 v)

- Utilise W→jj pour calibrer l'énergie des jets légers
- Reconstruit $t \rightarrow jjb$: b choisi pour $p_T(top)$ max. —
- Utilise p_T^{miss} pour p_T^{v} et la contrainte M_W pour $W \rightarrow lv$
- Reconstruit t \rightarrow lvb avec l'autre b: σ ~12 GeV

 ϵ (rec)~ 30%, pureté des tt reconstruits ~ 70%

Masse du top (1)

Masse du top (2)

Content Erreurs systématiques sur m_t (GeV) dans le canal semileptonique

\Box ATLAS peut mesurer M_t à ~1 GeV dans le canal semileptonique

□ Attentes du Tevatron (2 fb⁻¹) ~2 GeV

Masse du top (3)

□ Canal dileptonique (10 fb⁻¹)

- <u>Evt/evt</u>: suppose m_t et calcule la probabilité de la solution (en utilisant la cinématique & topologie)
- <u>Tous les evts</u>: choisit m_t avec la plus grande probabilité moyenne
- Erreurs systématiques: ~2 GeV (PDF + frag. du b)

Etats finals avec J/ψ (100 fb⁻¹)

Corrélation entre M_{IJ/ψ} et m_t

Pascal Pralavorio

(CPPM)

- → Pas d'erreurs systématiques venant de E(b) !
- ~1000 evts/100 fb⁻¹ $\rightarrow \Delta M_t$ ~1 GeV

Polarisation du W (1)

□ Teste la décroissance du top (dans l'evt tt reconstruit) ...

Image: Image:

Polarisation du W (2)

□ Méthode de mesure (1): Fonction de correction

Paramétrisation unique pour l'étude des erreurs systématiques

Polarisation du W (3)

□ Méthode de mesure (2): Fit à 2 paramètres avec F₀+F_L+F_R=1

Résultats compatibles avec le MS: la méthode est non biaisée !

Pascal Pralavorio (CPPM)

Polarisation du W (5)

□ Résultats en combinant les canaux semileptonique et dileptonique (10fb⁻¹)

	SM (M _t =175 GeV)	ATLAS (±stat ±syst)
FL	0.297	$\pm 0.003 \pm 0.024$
F ₀	0.703	$\pm \ \textbf{0.004} \pm \textbf{0.015}$
F _R	0.000	$\pm \ \textbf{0.003} \pm \textbf{0.012}$

EPJC44S2 (2005) 13

- La mesure est complètement dominée par les erreurs systématiques
- ATLAS (10 fb⁻¹) peut mesurer $F_0 \sim 2\%$ et $F_R \sim 1\%$
- Attentes du Tevatron (2 fb⁻¹): $\delta F_0^{stat} \sim 0.09$ et $\delta F_R^{stat} \sim 0.03$

Polarisation du W (6)

Corrélation de spin tt (1)

□ Teste la production du top ...

• t et t non polarisés dans tt, mais corrélations entre les spins de t et t

... en mesurant la distribution des particules filles dans le repère du top

Corrélation de spin tt (2)

Méthode analogue à la polarisation du W (sélection et reconstruction modifient les distributions du MS)

□ Résultats en combinant les canaux semileptonique et dileptonique (10 fb⁻¹)

	SM	ATLAS (±stat ±syst)
Α	0.42	$\pm \ \textbf{0.014} \pm \textbf{0.023}$
A _D	-0.29	$\pm \ \textbf{0.008} \pm \textbf{0.010}$
		EPJC44S2 (2005) 13

- Erreurs systématiques dominées par l'échelle de E(b), masse du top et FSR
- ATLAS (10 fb⁻¹) peut mesurer la corrélation de spin ~4%
- Attentes du Tevatron (2 fb⁻¹): δA^{stat}/A~40%

Charge du top

- $\Box \mathbf{Q}_{top}=-4/3 \text{ (t}\rightarrow W^{-}b \text{ au lieu de t}\rightarrow W^{+}b) ?$
- □ <u>Méthode 1</u>: Mesure de $\sigma(pp \rightarrow t\bar{t}\gamma)$
 - $\sigma(pp \rightarrow t\bar{t}\gamma)$ est proportionnel à Q_{top}^2
 - Après sélection+reconstruction (10fb⁻¹),
 σ (Q=-4/3) > σ (Q=2/3)

	Q=2/3	Q=-4/3
pp→ttγ	80	250
Bruit de fond	70	70

ATL-PHYS-2003-035

- □ <u>Méthode 2</u>: Mesure la charge des produits de décroissance du top
 - Association des paires b-lepton issues du même top
 - Calcul de la charge du b sur une base statistique: $q_{bjet} = \frac{\sum_{i} q_{i} |\vec{j} \cdot \vec{p}_{i}|^{\kappa}}{\sum_{i} |\vec{j} \cdot \vec{p}_{i}|^{\kappa}}, \kappa = 0.6$
 - Séparation entre les 2 hypothèses de Q_{top} nécéssite moins de données que pour la méthode 1 (~1 fb⁻¹)

Tevatron:

D0 (360 pb⁻¹) exclut Q=-4/3 à 94% CL (10/2005, pas encore publié)

Sélection

- S et S/B plus petits comparé à tt:
 - Vraisemblance basée sur N(jet),
 N(b-jet), H_T=Σp_T(jet), M_{lvb}
 - ➔ Nécessite 30 fb⁻¹ (surtout W*)
- Bruit de fond principal: tt, W+jets, ...

Mesure de la section efficace (σ)

- Uncertitude théorique: de ±4% (W*) à ±8% (W-g)
- Erreur statistique relative sur σ estimée avec

 √(S+B)/S pour les 3 processus séparement: 1%-6%
- → Erreurs stat.⊕théo. ~7-8% par processus
- Controle du niveau de BdF avec les données du LHC

Signal (S) et BdF (B) sélectionné après 30 fb⁻¹

Processus (W→Iv)	s	В	√(S+B)/S
W-g	7k	2k	1 %
Wt	5k	35k	4 %
W*	1k	5k	6 %

Single top (2)

tan B

Sensibilité à la nouvelle physique (W*)

- La présence de H⁺→tb augmente la section efficace
- Sensibilité pour grand tanβ et M_H>200 GeV
- Complémentaire à la recherche directe du Higgs chargé

□ Accès direct à l'élément V_{tb} de la matrice CKM

- $\sigma \alpha |V_{tb}|^2 \rightarrow$ erreur statistique de 0.5% (Wg) à 3% (W*)
- Erreurs stat. Théo. ~3-4% pour chaque processus
- Augmente la sensibilité à la nouvelle physique en combinant avec les résultats de la polarisation du W (tt)

Le single top est hautement polarisé

Précision statistique sur la polarisation du top ~2% après 10 fb⁻¹

Courants neutres changeant la saveur (FCNC)

□ Les processus FCNC impliquant le top du MS sont très rares (BR < 10⁻¹³-10⁻¹⁰)

- Les modèles au delà du MS prévoient des augmentations (BR jusqu'à to 10⁻⁵)
- Les FCNC peuvent être détectés dans la décroisance du top (tt, single top)
- Vraisemblance pour séparer signal et bruit de fond (principalement tt)

 \Box Sensibilité d'ATLAS à 5 σ / 95% CL au rapport d'embranchement FCNC dans tt

Processus	95% CL in 2005	ATLAS 5σ (10 fb ⁻¹)	ATLAS 95% CL (10 fb ⁻¹)	
t→Zq	~ 0.1	5 10- 4	3 10-4 🔶	— Reconstruit t→Zq →(l+l-)j
t→γq	0.003	1 10-4	7 10 ⁻⁵	
t→gq	0.3	5 10- ³	1 10-3 ←	 Grand bruit de fond QCD

ATL-PHYS-PUB-2005-009

→ ATLAS améliore les limites actuelles de ~10²-10³ mais reste loin du MS

Conclusions

- LHC sera déjà une usine à W, Z, top après 1 an (10 fb⁻¹). Les études QCD démarreront pendant la mise en service en 2007.
- Les mesures de précision, sensibles à la nouvelle physique dès 10 fb⁻¹, seront dominées par les erreurs systématiques :
 - Masse du W < 20 MeV et du top ~1 GeV \rightarrow Contraint le MS M_H ~30%
 - Teste la production et décroissance du top en mesurant la polarization du W
 ~1-2% et la corrélation de spin ~4% → Couplages anormaux, spin du top≠1/2
- D'autres mesures auront besoin de plus de statistique (30/100 fb⁻¹):
 - Single top: $\sigma \sim 8\%$ et V_{tb} $\sim 4\%$ (pas de syst.) → Sensible à H⁺→t b (2HDM)
 - TGC anormaux → Améliore les limites actuelles de 2-10⁵

→ La physique de précision permettra d'évaluer le potentiel d' ATLAS

Planning du LHC

Pascal Pralavorio (CPPM)

Performance: *b-tagging*

Algorithme de *b-tagging* : un poids est donné à chaque jet en combinant les paramètres d'impact signés (1D+2D) et la reconstruction des vertex secondaires (masse, nombre de vertex, ...)

Performance: calo EM

Résultats des test faisceaux sur les modules du calorimètre électromagnétique à argon liquide (2001-2002)

Linéarité (Tonneau, |η|<1.4)

Uniformité (Endcap, 1.4< |η|<2.5)

Bruit de fond (canal semileptonique)

	Signal et l			
		Evts attendus (x10 ⁶)	Evts après sélection + recons.	
W(→Iv) +4jets	(AlpGen)	~20 (p _T ^{jets} >10 GeV)	[400,1000]*	* Stat. de Poisson x63
QCD (bb)		6000 (√ŝ>120 GeV)	200*	* Stat. x 8
Z(→I⁺I⁻) +jets	≻(Pythia)	50	12	
ZZ+ZW+WW	J	1	4	
W(→lv) bb	(AcerMC)	0.7	3	
Single top		1.0	350	Non tt: 50 < S/B < 90
tt → τ+X		1.3	6200	
tt → hadr.	(TopReX)	3.7	70	$tt \rightarrow \tau + X: S/B = 13$
SIGNAL		2.5	85000	Normalisation et forme du
S/B~12; bruit de fond principal $t\bar{t} \rightarrow \tau + X$				Bruit de fond sous contrôle

Polarization du W: composante V+A

Changement attendu de la fonction de correction dans le cas d'une composante V+A → biais

Polarisation du top

Dans le repère du top, les effets de polarisation (S) sont observés en mesurant les distributions angulaires des particules filles :

$$\frac{1}{N}\frac{dN}{d\cos\theta_{i}} = \frac{1}{2}(1+S\alpha_{i}\cos\theta_{i})$$

- angle entre une particule de la décroissance du top θ et l'axe de quantification du spin du top **s**
- degré avec lequel l'angle de cette particule est lié α au spin du top

	W	b	l⁺,d,s	v,u,c
α (NLO)	0.40	-0.40	1.	-0.32

Recherche de résonances tt

□ Certains modèles théoriques prédisent des résonances décroissant en tt

- Higgs MS (BR plus petit comparé aux décroissances WW et ZZ)
- Higgs MSSM (H/A, si $m_H, m_A > 2m_t$, BR(H/A→tt)≈1 pour tan $\beta \approx 1$)

D Exercice: Reconstruire M_{tt} si σ_X , Γ_X et BR(X \rightarrow tt) de la résonance X connus

- Canal de décroissance t semileptonique
- Bruit de fond = tt du MS

